RSS-Feed abonnieren
DOI: 10.1055/s-0036-1609845
A Highly Efficient Copper(II)-Catalyzed Cross-Dehydrogenative-Coupling Reaction of N-Arylglycine Esters with 2-Arylimidazo[1,2-a]pyridines
Financial support from the National Natural Science Foundation of China (21602027, 11765003), the Natural Science Foundation of Jiangxi Province (20171BAB213006, 20171BAB203004), the China Postdoctoral Science Foundation (2018M632595), the Foundation of Jiangxi Educational Committee (GJJ170430) and the Scientific Research Foundation of East China University of Technology (DHBK2016112) are gratefully acknowledged.Publikationsverlauf
Received: 06. Februar 2018
Accepted after revision: 08. April 2018
Publikationsdatum:
28. Mai 2018 (online)
Abstract
A rapid and highly efficient copper(II)-catalyzed cross-dehydrogenative coupling (CDC) reaction of N-arylglycine esters with imidazo[1,2-a]pyridines has been described. A broad range of N-arylglycine esters underwent the CDC reaction smoothly with 2-arylimidazo[1,2-a]pyridines to give α-substituted α-amino acid esters in excellent yields. This synthetic method has the advantages of high yields, good functional groups compatibility, simple operation, and mild reaction conditions. A possible mechanism for the CDC reaction is also proposed. The use of a copper salt as the catalyst and air as the terminal oxidant makes this transformation sustainable and practical.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609845.
- Supporting Information
-
References
- 1 Bagdi AK. Santra S. Monir K. Hajra A. Chem. Commun. 2015; 51: 1555
- 2a Rupert KC. Henry JR. Dodd JH. Wadsworth SA. Cavender DE. Olini GC. Fahmy B. Siekierka J. Bioorg. Med. Chem. Lett. 2003; 13: 347
- 2b Harrison TS. Keating GM. CNS Drugs 2005; 19: 65
- 2c Enguehard-Gueiffier C. Gueiffier A. Mini-Rev. Med. Chem. 2007; 7: 888
- 2d Hanson SM. Morlock EV. Satyshur KA. Czajkowski C. J. Med. Chem. 2008; 51: 7243
- 2e Wiegand MH. Drugs 2008; 68: 2411
- 2f Al-Tel TH. Al-Qawasmeh RA. Zaarour R. Eur. J. Med. Chem. 2011; 46: 1874
- 2g Andreani A. Granaiola M. Locatelli A. Morigi R. J. Med. Chem. 2012; 55: 2078
- 3a Yang H. Yang L. Li Y. Zhang F. Liu H. Yi B. Catal. Commun. 2012; 26: 11
- 3b Kim O. Jeong Y. Lee H. Hong S.-S. Hong S. J. Med. Chem. 2011; 54: 2455
- 3c Chernyak N. Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 2743
- 4a Ravi C. Mohan CD. Adimurthy S. Org. Lett. 2014; 16: 2978
- 4b Kaswan P. Porter A. Pericherla K. Simone M. Peters S. Kumar A. DeBoef B. Org. Lett. 2015; 17: 5208
- 4c Wang Q. Qi Z. Xie F. Li X. Adv. Synth. Catal. 2015; 357: 355
- 4d Monir K. Bagdi AK. Ghosh M. Hajra A. J. Org. Chem. 2015; 80: 1332
- 4e Yang D. Yan K. Wei W. Li G. Lu S. Zhao C. Tian L. Wang H. J. Org. Chem. 2015; 80: 11703
- 4f Yadav M. Dara S. Saikam V. Kumar M. Aithagani SK. Paul S. Vishwakarma RA. Singh PP. Eur. J. Org. Chem. 2015; 6526
- 4g Ji X.-M. Zhou S.-J. Chen F. Zhang X.-G. Tang R.-Y. Synthesis 2015; 47: 659
- 4h Jiao J. Wei L. Ji X.-M. Hu M.-L. Tang R.-Y. Adv. Synth. Catal. 2016; 358: 268
- 4i Mondal S. Samanta S. Jana S. Hajra A. J. Org. Chem. 2017; 82: 4504
- 5a Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 5b Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
- 5c Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
- 5d Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
- 5e Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
- 6a Zhao L. Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 7075
- 6b Xie J. Huang Z.-Z. Angew. Chem. Int. Ed. 2010; 49: 10181
- 6c Zhang G. Zhang Y. Wang R. Angew. Chem. Int. Ed. 2011; 50: 10429
- 6d Gao X.-W. Meng Q.-Y. Xiang M. Chen B. Feng K. Tung C.-H. Wu L.-Z. Adv. Synth. Catal. 2013; 355: 2158
- 6e Zhu Z.-Q. Bai P. Huang Z.-Z. Org. Lett. 2014; 16: 4881
- 6f Wei W.-T. Song R.-J. Li J.-H. Adv. Synth. Catal. 2014; 356: 1703
- 6g Gao X.-W. Meng Q.-Y. Li J.-X. Zhong J.-J. Lei T. Li X.-B. Tung C.-H. Wu L.-Z. ACS Catal. 2015; 5: 2391
- 6h Zhu Z.-Q. Xie Z.-B. Le Z.-G. J. Org. Chem. 2016; 81: 9449
- 6i Zhu Z.-Q. Xie Z.-B. Le Z.-G. Synlett 2017; 28: 485
- 7a Zhao L. Basle O. Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2009; 11: 4106
- 7b Li K. Tan G. Huang J. Song F. You J. Angew. Chem. Int. Ed. 2013; 52: 12942
- 7c Huo C. Yuan Y. Wu M. Jia X. Wang X. Chen F. Tang J. Angew. Chem. Int. Ed. 2014; 53: 13544
- 7d Huo C. Wang C. Wu M. Jia X. Xie H. Yuan Y. Adv. Synth. Catal. 2014; 356: 411
- 7e Salman M. Zhu Z.-Q. Huang Z.-Z. Org. Lett. 2016; 18: 1526
- 7f Xie Z. Liu X. Liu L. Org. Lett. 2016; 18: 2982
- 7g Xie Z. Jia J. Liu X. Liu L. Adv. Synth. Catal. 2016; 358: 919
- 7h Jiao J. Zhang J.-R. Liao Y.-Y. Xu L. Hu M. Tang R.-Y. RSC Adv. 2017; 7: 30152
For selected papers, see:
For selected reviews, see: