CC BY-NC-ND 4.0 · Int Arch Otorhinolaryngol 2017; 21(04): 318-322
DOI: 10.1055/s-0037-1598243
Original Research
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Air and Bone Conduction Frequency-specific Auditory Brainstem Response in Children with Agenesis of the External Auditory Canal

Pricila Sleifer
1   Department of Human Health and Communication, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
,
Dayane Domeneghini Didoné
2   Child and Adolescent Health Program, Universidade Federal do Rio Grande do Sul Ringgold Standard Institution, Porto Alegre, Rio Grande do Sul, Brazil
,
Ísis Bicca Keppeler
1   Department of Human Health and Communication, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
,
Claudine Devicari Bueno
1   Department of Human Health and Communication, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
,
Rudimar dos Santos Riesgo
3   Child Neurology Unit (HCPA-UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
› Author Affiliations
Further Information

Publication History

22 June 2016

21 December 2016

Publication Date:
13 February 2017 (online)

Abstract

Introduction The tone-evoked auditory brainstem responses (tone-ABR) enable the differential diagnosis in the evaluation of children until 12 months of age, including those with external and/or middle ear malformations. The use of auditory stimuli with frequency specificity by air and bone conduction allows characterization of hearing profile.

Objective The objective of our study was to compare the results obtained in tone-ABR by air and bone conduction in children until 12 months, with agenesis of the external auditory canal.

Method The study was cross-sectional, observational, individual, and contemporary. We conducted the research with tone-ABR by air and bone conduction in the frequencies of 500 Hz and 2000 Hz in 32 children, 23 boys, from one to 12 months old, with agenesis of the external auditory canal.

Results The tone-ABR thresholds were significantly elevated for air conduction in the frequencies of 500 Hz and 2000 Hz, while the thresholds of bone conduction had normal values in both ears. We found no statistically significant difference between genders and ears for most of the comparisons.

Conclusion The thresholds obtained by bone conduction did not alter the thresholds in children with conductive hearing loss. However, the conductive hearing loss alter all thresholds by air conduction. The tone-ABR by bone conduction is an important tool for assessing cochlear integrity in children with agenesis of the external auditory canal under 12 months.

 
  • References

  • 1 Stapells DR. Threshold Estimation by the Tone-Evoked Auditory Brainstem Response: A Literature Meta-Analysis. J Speech Lang Pathol Audiol 2000b; 24 (02) 74-83
  • 2 Chapchap MJ. [Dissertation]. Respostas elétricas de tronco encefálico por estimulação aérea e óssea em neonatos. São Paulo, Brazil: Escola Paulista de Medicina, Universidade Federal de São Paulo; 2002
  • 3 American Academy of Pediatrics, Joint Committee on Infant Hearing. Year 2007 position statement: Principles and guidelines for early hearing detection and intervention programs. Pediatrics 2007; 120 (04) 898-921
  • 4 Alvarenga KF, Araújo ES. Avaliação audiológica de 0 a 1 ano de idade. In: Boéchat EM, Menezes PL, Couto CM, Frizzo ACF, Scharlach RC. Anastásio ART. Tratado de Audiologia. 2nd Ed. São Paulo: Santos; 2015: 395-406
  • 5 Almeida MG, Rodrigues GRI, Lewis DR. Potenciais evocados auditivos por frequência específica em lactentes com audição normal. Rev CEFAC 2011; 13: 489-495
  • 6 Farias VB, Sleifer P, Pauletti LF, Krimberg CFD. Correlation of the findings of auditory steady-state evoked potential and of behavioral hearing assessment in infants with sensorineural hearing loss. CoDAS 2014; 26 (03) 226-230
  • 7 Stapells DR. Frequency-specific threshold assessment in young infants using the transient ABR and the brainstem ASSR. In: Seewal RC, Tharp AM. Comprehensive handbook of pediatric audiology. San Diego: Plural Publishing; 2011: 409-48
  • 8 Matas CG, Haitaima NM, Gonçalves IC. Estabilidade dos potenciais evocados auditivos em indivíduos adultos com audição normal. Rev Soc Bras Fonoaudiol 2011; 16 (01) 37-41
  • 9 British Columbia Early Hearing Program (BCEHP). Audiology Assessment Protocol. Version 4.1. 2012 ; available at: http://www.phsa.ca/Documents/bcehpaudiologyassessmentprotocol.pdf
  • 10 Ramos N, Lewis DR. Potencial Evocado Auditivo de Tronco Encefálico por frequência específica por via aérea e via óssea em neonatos ouvintes normais. Rev CEFAC 2014; 16 (03) 757-767
  • 11 Zhang Y, Fan Y, Wang Y, Chen X. [Efficacy of BAHA softband in young children with bilateral congenital aural atresia]. Zhonghua Yi Xue Za Zhi 2014; 94 (06) 420-423
  • 12 Sleifer P. Avaliação eletrofisiológica da audição em crianças. In: Cardoso MC. Fonoaudiologia na infância: avaliação e tratamento. Rio de Janeiro: Revinter; 2015: 171-94
  • 13 Liang S, Soli SD, Zheng Y, Li G, Meng Z. Initial classification of pediatric hearing impairment using behavioral measures of early prelingual auditory development. Int J Audiol 2016; 55 (04) 224-231
  • 14 Gomes DT. [Dissertação de Mestrado]. Potencial Evocado Auditivo por Condução Óssea em Pacientes com Microssomia Craniofacial. Curitiba, Brazil: Universidade Tuiuti do Paraná; 2007
  • 15 Rodrigues GRI, Almeida MG, Lewis DR. Potenciais evocados auditivos de tronco encefálico por frequência específica e de estado estável na audiologia pediátrica: estudo de caso. Rev Soc Bras Fonoaudiol 2009; 14 (04) 534-538
  • 16 Hatton JL, Janssen RM, Stapells DR. Auditory brainstem responses to bone-conducted brief tones in young children with conductive or sensorineural hearing loss. Int J Otolaryngol 2012; 2012 (12) 284864
  • 17 Tekes A, Ishman SL, Baugher KM. , et al. Does microtia predict severity of temporal bone CT abnormalities in children with persistent conductive hearing loss?. J Neuroradiol 2013; 40 (03) 192-197
  • 18 Dougherty W, Kesser BW. Management of Conductive Hearing Loss in Children. Otolaryngol Clin North Am 2015; 48 (06) 955-974
  • 19 Curado NRPV, Muniz LF, Silveira AK, Silva ARA, Griz SMS. Potencial evocado auditivo de tronco encefálico por condução óssea: uma revisão integrativa. Rev CEFAC 2015; 17 (02) 635-647
  • 20 Anwer C, Schwarz T, Volk SW, Vite C. BAER testing in a dog with bilateral external ear canal atresia. J Am Anim Hosp Assoc 2011; 47 (05) 370-374
  • 21 Bartel-Friedrich S, Wulke C. Classification and diagnosis of ear malformations. GMS Curr Top Otorhinolaryngol Head Neck Surg 2007; 6: Doc05
  • 22 Bartel-Friedrich S. Congenital Auricular Malformations: Description of Anomalies and Syndromes. Facial Plast Surg 2015; 31 (06) 567-580
  • 23 Paccola ECM, Fernandes JC, Mondelli MFCG. Amplificação por condução óssea em malformações congênitas: benefício e satisfação. Rev Bras Otorrinolaringol (Engl Ed) 2013; 79 (03) 359-365
  • 24 White RD, Ananthakrishnan G, McKean SA, Brunton JN, Hussain SSM, Sudarshan TA. Masses and disease entities of the external auditory canal: radiological and clinical correlation. Clin Radiol 2012; 67 (02) 172-181
  • 25 Sanhueza CD, Esquivel CP, Dentone SC. Review of the management of external auditory canal atresia using Osseo integrated implantable hearing devices: Report of a successful case with Bonebridge® implant. Rev Otorinolaringol Cir Cabeza Cuello 2014; 74 (02) 161-166
  • 26 Valenzuela DG, Kumar DS, Atkins CL, Beers A, Kozak FK, Chadha NK. Chloral hydrate sedation for auditory brainstem response (ABR) testing in children: Safety and effectiveness. Int J Pediatr Otorhinolaryngol 2016; 83: 175-178 10.1016/j.ijporl.2016.02.006
  • 27 Romero ACL, Delecrode CR, Cardoso ACV, Frizzo ACF. Potencial evocado auditivo de tronco encefálico em crianças encaminhadas de um programa de triagem auditiva neonatal. Rev Bras Saude Mater Infant 2012; 12 (02) 145-153
  • 28 Tassano E, Jagannathan V, Drögemüller C. , et al. Congenital aural atresia associated with agenesis of internal carotid artery in a girl with a FOXI3 deletion. Am J Med Genet A 2015; 167A (03) 537-544
  • 29 Wei J, Ran S, Yang Z, Lin Y, Tang J, Ran H. Prenatal ultrasound screening for external ear abnormality in the fetuses. [Published online June, 2014, 2014] BioMed Res Int 2014; 2014: 357564 10.1155/2014/357564
  • 30 Fichino SN, Lewis DR, Fávero ML. Electrophysiologic threshold study in air and bone conduction in children with 2 months or less age. Rev Bras Otorrinolaringol 2007; 73 (02) 251-256
  • 31 Gorga MP, Kaminski JR, Beauchaine KL, Bergman BM. A comparison of auditory brain stem response thresholds and latencies elicited by air- and bone-conducted stimuli. Ear Hear 1993; 14 (02) 85-94
  • 32 Garcia MV, Azevedo MF, Biaggio EPV, Didoné DD, Testa JRG. Potencial evocado auditivo de estado estável por via aérea e via óssea em crianças de zero a seis meses sem e com comprometimento condutivo. Rev CEFAC 2014; 16 (03) 699-706
  • 33 Nadaraja GS, Gurgel RK, Kim J, Chang KW. Hearing outcomes of atresia surgery versus osseointegrated bone conduction device in patients with congenital aural atresia: a systematic review. Otol Neurotol 2013; 34 (08) 1394-1399
  • 34 Cone-Wesson B, Ramirez GM. Hearing sensitivity in newborns estimated from ABRs to bone-conducted sounds. J Am Acad Audiol 1997; 8 (05) 299-307
  • 35 Elsayed AM, Hunter LL, Keefe DH. , et al. Air and Bone Conduction Click and Tone-Burst Auditory Brainstem Thresholds Using Kalman Adaptive Processing in Nonsedated Normal-Hearing Infants. Ear Hear 2015; 36 (04) 471-481