Semin Musculoskelet Radiol 2017; 21(02): 045-062
DOI: 10.1055/s-0037-1599209
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Update on MRI Pulse Sequences for the Knee: Imaging of Cartilage, Meniscus, Tendon, and Hardware

Aticha Ariyachaipanich
1   Department of Radiology, University of California-San Diego, La Jolla, California
2   Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
3   Department of Medicine, Chulalongkorn University, Bangkok, Thailand
,
Won C. Bae
1   Department of Radiology, University of California-San Diego, La Jolla, California
4   Department of Radiology, VA San Diego Healthcare System, San Diego, California
,
Sheronda Statum
1   Department of Radiology, University of California-San Diego, La Jolla, California
4   Department of Radiology, VA San Diego Healthcare System, San Diego, California
,
Christine B. Chung
1   Department of Radiology, University of California-San Diego, La Jolla, California
4   Department of Radiology, VA San Diego Healthcare System, San Diego, California
› Author Affiliations
Further Information

Publication History

Publication Date:
29 March 2017 (online)

Abstract

Magnetic resonance imaging (MRI) is widely used in the clinical setting as well as for research applications. Since its inception, technical development has broadly progressed as a response to challenges in both the clinical and research settings. Higher magnetic field strength and advances in hardware and software have revolutionized the diagnostic potential of MRI and moved well beyond diagnosis to characterization of tissue metabolism, biochemistry, disease pathogenesis, and material property, to name a few. This article focuses on state-of-the-art clinical and cutting-edge novel pulse sequences applied to knee MRI.

 
  • References

  • 1 Fox AJ, Bedi A, Rodeo SA. The basic science of human knee menisci: structure, composition, and function. Sports Health 2012; 4 (4) 340-351
  • 2 OECD. Magnetic resonance imaging (MRI) exams (indicator). 2016 DOI: 10.1787/1d89353f-en
  • 3 Choi JA, Gold GE. MR imaging of articular cartilage physiology. Magn Reson Imaging Clin N Am 2011; 19 (2) 249-282
  • 4 Bobic V. ICRS MR imaging protocol for knee articular cartilage. ICRS Articular Cartilage Imaging Committee. Zollikon, Switzerland: International Cartilage Repair Society; 2000: 12
  • 5 Crema MD, Roemer FW, Marra MD , et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (1) 37-61
  • 6 Mohr A. The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 2003; 32 (7) 396-402
  • 7 Disler DG, McCauley TR, Kelman CG , et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 1996; 167 (1) 127-132
  • 8 Duc SR, Pfirrmann CW, Schmid MR , et al. Articular cartilage defects detected with 3D water-excitation true FISP: prospective comparison with sequences commonly used for knee imaging. Radiology 2007; 245 (1) 216-223
  • 9 Kijowski R, Blankenbaker DG, Klaers JL, Shinki K, De Smet AA, Block WF. Vastly undersampled isotropic projection steady-state free precession imaging of the knee: diagnostic performance compared with conventional MR. Radiology 2009; 251 (1) 185-194
  • 10 Kohl S, Meier S, Ahmad SS , et al. Accuracy of cartilage-specific 3-Tesla 3D-DESS magnetic resonance imaging in the diagnosis of chondral lesions: comparison with knee arthroscopy. J Orthop Surg 2015; 10: 191
  • 11 Gold GE, Fuller SE, Hargreaves BA, Stevens KJ, Beaulieu CF. Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging 2005; 21 (4) 476-481
  • 12 Yoshioka H, Stevens K, Hargreaves BA , et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 2004; 20 (5) 857-864
  • 13 Rosas H, Kijowski R. Volumetric magnetic resonance imaging of the musculoskeletal system. Semin Roentgenol 2013; 48 (2) 140-147
  • 14 Duc SR, Pfirrmann CW, Koch PP, Zanetti M, Hodler J. Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence: preliminary study. Radiology 2008; 246 (2) 526-535
  • 15 Siorpaes K, Wenger A, Bloecker K, Wirth W, Hudelmaier M, Eckstein F. Interobserver reproducibility of quantitative meniscus analysis using coronal multiplanar DESS and IWTSE MR imaging. Magn Reson Med 2012; 67 (5) 1419-1426
  • 16 Jung JY, Yoon YC, Kwon JW, Ahn JH, Choe BK. Diagnosis of internal derangement of the knee at 3.0-T MR imaging: 3D isotropic intermediate-weighted versus 2D sequences. Radiology 2009; 253 (3) 780-787
  • 17 Notohamiprodjo M, Horng A, Pietschmann MF , et al. MRI of the knee at 3T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence. Invest Radiol 2009; 44 (9) 585-597
  • 18 Jung JY, Jee WH, Park MY, Lee SY, Kim JM. Meniscal tear configurations: categorization with 3D isotropic turbo spin-echo MRI compared with conventional MRI at 3 T. AJR Am J Roentgenol 2012; 198 (2) W173–W180
  • 19 Ristow O, Steinbach L, Sabo G , et al. Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee—image quality and diagnostic performance. Eur Radiol 2009; 19 (5) 1263-1272
  • 20 Kijowski R, Davis KW, Woods MA , et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging—diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 2009; 252 (2) 486-495
  • 21 Kumar D, Schooler J, Zuo J , et al. Trabecular bone structure and spatial differences in articular cartilage MR relaxation times in individuals with posterior horn medial meniscal tears. Osteoarthritis Cartilage 2013; 21 (1) 86-93
  • 22 Carballido-Gamio J, Folkesson J, Karampinos DC , et al. Generation of an atlas of the proximal femur and its application to trabecular bone analysis. Magn Reson Med 2011; 66 (4) 1181-1191
  • 23 Gyftopoulos S, Yemin A, Mulholland T , et al. 3DMR osseous reconstructions of the shoulder using a gradient-echo based two-point Dixon reconstruction: a feasibility study. Skeletal Radiol 2013; 42 (3) 347-352
  • 24 Glaser C, D'Anastasi M, Theisen D , et al. Understanding 3D TSE sequences: advantages, disadvantages, and application in MSK imaging. Semin Musculoskelet Radiol 2015; 19 (4) 321-327
  • 25 Hoshino Y, Kim D, Fu FH. Three-dimensional anatomic evaluation of the anterior cruciate ligament for planning reconstruction. Anat Res Int 2012; 2012: 569704
  • 26 Crespo B, Aga C, Wilson KJ , et al. Measurements of bone tunnel size in anterior cruciate ligament reconstruction: 2D versus 3D computed tomography model. J Exp Orthop 2014; 1 (1) 2
  • 27 Robbrecht C, Claes S, Cromheecke M , et al. Reliability of a semi-automated 3D-CT measuring method for tunnel diameters after anterior cruciate ligament reconstruction: a comparison between soft-tissue single-bundle allograft vs. autograft. Knee 2014; 21 (5) 926-931
  • 28 Maradit Kremers H, Larson DR, Crowson CS , et al. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am 2015; 97 (17) 1386-1397
  • 29 Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am 2005; 87 (7) 1487-1497
  • 30 Olsen RV, Munk PL, Lee MJ , et al. Metal artifact reduction sequence: early clinical applications. Radiographics 2000; 20 (3) 699-712
  • 31 Chang EY, Bae WC, Chung CB. Imaging the knee in the setting of metal hardware. Magn Reson Imaging Clin N Am 2014; 22 (4) 765-786
  • 32 Talbot BS, Weinberg EP. MR Imaging with metal-suppression sequences for evaluation of total joint arthroplasty. Radiographics 2016; 36 (1) 209-225
  • 33 Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 1988; 15 (1) 7-11
  • 34 Ai T, Padua A, Goerner F , et al. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging. Invest Radiol 2012; 47 (5) 267-276
  • 35 Fritz J, Ahlawat S, Demehri S , et al. Compressed Sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol 2016; 51 (10) 666-676
  • 36 Otazo R, Nittka M, Bruno M , et al. Sparse-SEMAC: rapid and improved SEMAC metal implant imaging using SPARSE-SENSE acceleration. Magn Reson Med 2016
  • 37 Sutter R, Hodek R, Fucentese SF, Nittka M, Pfirrmann CW. Total knee arthroplasty MRI featuring slice-encoding for metal artifact correction: reduction of artifacts for STIR and proton density-weighted sequences. AJR Am J Roentgenol 2013; 201 (6) 1315-1324
  • 38 Agten CA, Del Grande F, Fucentese SF, Blatter S, Pfirrmann CW, Sutter R. Unicompartmental knee arthroplasty MRI: impact of slice-encoding for metal artefact correction MRI on image quality, findings and therapy decision. Eur Radiol 2015; 25 (7) 2184-2193
  • 39 Dillenseger JP, Molière S, Choquet P, Goetz C, Ehlinger M, Bierry G. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skeletal Radiol 2016; 45 (5) 677-688
  • 40 den Harder JC, van Yperen GH, Blume UA, Bos C. Off-resonance suppression for multispectral MR imaging near metallic implants. Magn Reson Med 2015; 73 (1) 233-243
  • 41 Koff MF, Shah P, Koch KM, Potter HG. Quantifying image distortion of orthopedic materials in magnetic resonance imaging. J Magn Reson Imaging 2013; 38 (3) 610-618
  • 42 Chen CA, Chen W, Goodman SB , et al. New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact. J Magn Reson Imaging 2011; 33 (5) 1121-1127
  • 43 Hayter CL, Koff MF, Shah P, Koch KM, Miller TT, Potter HG. MRI after arthroplasty: comparison of MAVRIC and conventional fast spin-echo techniques. AJR Am J Roentgenol 2011; 197 (3) W405-11
  • 44 Koch KM, Brau AC, Chen W , et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med 2011; 65 (1) 71-82
  • 45 Liebl H, Heilmeier U, Lee S , et al. In vitro assessment of knee MRI in the presence of metal implants comparing MAVRIC-SL and conventional fast spin echo sequences at 1.5 and 3 T field strength. J Magn Reson Imaging 2015; 41 (5) 1291-1299
  • 46 Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health 2009; 1 (6) 461-468
  • 47 Benninghoff A. Form und Bau der Gelenknorpel in ihren Beziehungen zur Funktion. Z Zellforsch Mikrosk Anat 1925; 2: 783-862
  • 48 Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull 2008; 87: 77-95
  • 49 Muir H. Proteoglycans of cartilage. J Clin Pathol Suppl (R Coll Pathol) 1978; 12: 67-81
  • 50 Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 1998; 47: 487-504
  • 51 Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis 1984; 43 (4) 635-640
  • 52 Adams ME, McDevitt CA, Ho A, Muir H. Isolation and characterization of high-buoyant-density proteoglycans from semilunar menisci. J Bone Joint Surg Am 1986; 68 (1) 55-64
  • 53 Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011; 32 (30) 7411-7431
  • 54 Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports 2000; 10 (6) 312-320
  • 55 Franchi M, Trirè A, Quaranta M, Orsini E, Ottani V. Collagen structure of tendon relates to function. Sci World J 2007; 7: 404-420
  • 56 Jozsa L, Kannus P, Balint JB, Reffy A. Three-dimensional ultrastructure of human tendons. Acta Anat (Basel) 1991; 142 (4) 306-312
  • 57 de Mos M, van El B, DeGroot J , et al. Achilles tendinosis: changes in biochemical composition and collagen turnover rate. Am J Sports Med 2007; 35 (9) 1549-1556
  • 58 Järvinen M, Józsa L, Kannus P, Järvinen TL, Kvist M, Leadbetter W. Histopathological findings in chronic tendon disorders. Scand J Med Sci Sports 1997; 7 (2) 86-95
  • 59 Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S. Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 2006; 208 (4) 471-490
  • 60 Plewes DB, Kucharczyk W. Physics of MRI: a primer. J Magn Reson Imaging 2012; 35 (5) 1038-1054
  • 61 Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. AJR Am J Roentgenol 2009; 193 (3) 628-638
  • 62 Lüsse S, Claassen H, Gehrke T , et al. Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging 2000; 18 (4) 423-430
  • 63 Lüsse S, Knauss R, Werner A, Gründer W, Arnold K. Action of compression and cations on the proton and deuterium relaxation in cartilage. Magn Reson Med 1995; 33 (4) 483-489
  • 64 Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater 2007; 13: 76-86
  • 65 Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology 1997; 205 (2) 546-550
  • 66 Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8 (4) 355-368
  • 67 Nishioka H, Hirose J, Nakamura E , et al. T1ρ and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. J Magn Reson Imaging 2012; 35 (1) 147-155
  • 68 Henriques C. Self-help groups in the rehabilitation of alcoholism and other drug dependencies [in Portuguese]. Servir 1990; 38 (1) 35-37
  • 69 Smith HE, Mosher TJ, Dardzinski BJ , et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 2001; 14 (1) 50-55
  • 70 Bittersohl B, Hosalkar HS, Hughes T , et al. Feasibility of T2* mapping for the evaluation of hip joint cartilage at 1.5T using a three-dimensional (3D), gradient-echo (GRE) sequence: a prospective study. Magn Reson Med 2009; 62 (4) 896-901
  • 71 Hesper T, Hosalkar HS, Bittersohl D , et al. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects. Skeletal Radiol 2014; 43 (10) 1429-1445
  • 72 Goodwin DW, Wadghiri YZ, Zhu H, Vinton CJ, Smith ED, Dunn JF. Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance. AJR Am J Roentgenol 2004; 182 (2) 311-318
  • 73 Van Breuseghem I, Palmieri F, Peeters RR, Maes F, Bosmans HT, Marchal GJ. Combined T1-T2 mapping of human femoro-tibial cartilage with turbo-mixed imaging at 1.5T. J Magn Reson Imaging 2005; 22 (3) 368-372
  • 74 Xu J, Xie G, Di Y, Bai M, Zhao X. Value of T2-mapping and DWI in the diagnosis of early knee cartilage injury. J Radiol Case Rep 2011; 5 (2) 13-18
  • 75 Mamisch TC, Trattnig S, Quirbach S, Marlovits S, White LM, Welsch GH. Quantitative T2 mapping of knee cartilage: differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading—initial results. Radiology 2010; 254 (3) 818-826
  • 76 Liu F, Choi KW, Samsonov A , et al. Articular cartilage of the human knee joint: in vivo multicomponent T2 analysis at 3.0 T. Radiology 2015; 277 (2) 477-488
  • 77 Goto H, Iwama Y, Fujii M , et al. A preliminary study of the T1rho values of normal knee cartilage using 3T-MRI. Eur J Radiol 2012; 81 (7) e796-e803
  • 78 Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging 2008; 26 (9) 1215-1220
  • 79 Li X, Benjamin Ma C, Link TM , et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage 2007; 15 (7) 789-797
  • 80 Welsch GH, Trattnig S, Hughes T , et al. T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI. Eur Radiol 2010; 20 (6) 1515-1523
  • 81 Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage 2013; 21 (10) 1474-1484
  • 82 Van Ginckel A, Verdonk P, Victor J, Witvrouw E. Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction. Am J Sports Med 2013; 41 (3) 550-559
  • 83 Su F, Hilton JF, Nardo L , et al. Cartilage morphology and T1ρ and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. Osteoarthritis Cartilage 2013; 21 (8) 1058-1067
  • 84 Prasad AP, Nardo L, Schooler J, Joseph GB, Link TM. T1ρ and T2 relaxation times predict progression of knee osteoarthritis. Osteoarthritis Cartilage 2013; 21 (1) 69-76
  • 85 Li H, Chen S, Tao H, Chen S. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction. Am J Sports Med 2015; 43 (4) 865-872
  • 86 Friedrich KM, Shepard T, de Oliveira VS , et al. T2 measurements of cartilage in osteoarthritis patients with meniscal tears. AJR Am J Roentgenol 2009; 193 (5) W411–W415
  • 87 Domayer SE, Welsch GH, Nehrer S , et al. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: preliminary results. Eur J Radiol 2010; 73 (3) 636-642
  • 88 Nishioka H, Nakamura E, Hirose J, Okamoto N, Yamabe S, Mizuta H. MRI T1ρ and T2 mapping for the assessment of articular cartilage changes in patients with medial knee osteoarthritis after hemicallotasis osteotomy. Bone Joint Res 2016; 5 (7) 294-300
  • 89 Welsch GH, Mamisch TC, Domayer SE , et al. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology 2008; 247 (1) 154-161
  • 90 Niethammer TR, Safi E, Ficklscherer A , et al. Graft maturation of autologous chondrocyte implantation: magnetic resonance investigation with T2 mapping. Am J Sports Med 2014; 42 (9) 2199-2204
  • 91 Nguyen TB, Takao S, Yu HJ , et al. T1rho and T2 relaxation times of the normal adult knee meniscus: analysis of zonal differences. Osteoarthritis Cartilage 2016; 24: S281-S282
  • 92 Rauscher I, Stahl R, Cheng J , et al. Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology 2008; 249 (2) 591-600
  • 93 Yamasaki S, Hashimoto Y, Takigami J , et al. The T2 value of normal menisci and comparison of the arthroscopic findings with change of T2 value for repaired meniscus using T2 mapping on cartilage setting. Paper presented at: 2015 International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine Biennial Congress; June 7–11, 2015 ; Lyon, France
  • 94 Wang A, Pedoia V, Su F , et al. MR T1ρ and T2 of meniscus after acute anterior cruciate ligament injuries. Osteoarthritis Cartilage 2016; 24 (4) 631-639
  • 95 Anz AW, Lucas EP, Fitzcharles EK, Surowiec RK, Millett PJ, Ho CP. MRI T2 mapping of the asymptomatic supraspinatus tendon by age and imaging plane using clinically relevant subregions. Eur J Radiol 2014; 83 (5) 801-805
  • 96 Ganal E, Ho CP, Wilson KJ , et al. Quantitative MRI characterization of arthroscopically verified supraspinatus pathology: comparison of tendon tears, tendinosis and asymptomatic supraspinatus tendons with T2 mapping. Knee Surg Sports Traumatol Arthrosc 2016; 24 (7) 2216-2224
  • 97 Bydder GM. Review. The Agfa Mayneord lecture: MRI of short and ultrashort T2 and T2* components of tissues, fluids and materials using clinical systems. Br J Radiol 2011; 84 (1008): 1067-1082
  • 98 Weder N, Zhang H, Jensen K , et al. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J Am Acad Child Adolesc Psychiatry 2014; 53 (4) 417-24.e5
  • 99 Felson DT, Lawrence RC, Dieppe PA , et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 2000; 133 (8) 635-646
  • 100 Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010; 1192: 230-237
  • 101 Frisbie DD, Morisset S, Ho CP, Rodkey WG, Steadman JR, McIlwraith CW. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med 2006; 34 (11) 1824-1831
  • 102 Chang EY, Pallante-Kichura AL, Bae WC , et al. Development of a Comprehensive Osteochondral Allograft MRI Scoring System (OCAMRISS) with histopathologic, micro-computed tomography, and biomechanical validation. Cartilage 2014; 5 (1) 16-27
  • 103 Meric G, Gracitelli GC, McCauley JC , et al. Osteochondral Allograft MRI Scoring System (OCAMRISS) in the knee: interobserver agreement and clinical application. Cartilage 2015; 6 (3) 142-149
  • 104 Du J, Takahashi AM, Bae WC, Chung CB, Bydder GM. Dual inversion recovery, ultrashort echo time (DIR UTE) imaging: creating high contrast for short-T(2) species. Magn Reson Med 2010; 63 (2) 447-455
  • 105 Du J, Bydder M, Takahashi AM, Carl M, Chung CB, Bydder GM. Short T2 contrast with three-dimensional ultrashort echo time imaging. Magn Reson Imaging 2011; 29 (4) 470-482
  • 106 Hargrave-Thomas E, van Sloun F, Dickinson M, Broom N, Thambyah A. Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states. Osteoarthritis Cartilage 2015; 23 (10) 1755-1762
  • 107 Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004; 232 (2) 592-598
  • 108 Du J, Carl M, Bae WC , et al. Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC). Osteoarthritis Cartilage 2013; 21 (1) 77-85
  • 109 Qian Y, Williams AA, Chu CR, Boada FE. Multicomponent T2* mapping of knee cartilage: technical feasibility ex vivo. Magn Reson Med 2010; 64 (5) 1426-1431
  • 110 Bittersohl B, Hosalkar HS, Sondern M , et al. Spectrum of T2* values in knee joint cartilage at 3 T: a cross-sectional analysis in asymptomatic young adult volunteers. Skeletal Radiol 2014; 43 (4) 443-452
  • 111 Williams A, Qian Y, Chu CR. UTE-T2∗ mapping of human articular cartilage in vivo: a repeatability assessment. Osteoarthritis Cartilage 2011; 19 (1) 84-88
  • 112 Shao H, Chang EY, Pauli C , et al. UTE bi-component analysis of T2* relaxation in articular cartilage. Osteoarthritis Cartilage 2016; 24 (2) 364-373
  • 113 Chu CR, Williams AA, West RV , et al. Quantitative magnetic resonance imaging UTE-T2* mapping of cartilage and meniscus healing after anatomic anterior cruciate ligament reconstruction. Am J Sports Med 2014; 42 (8) 1847-1856
  • 114 Bae WC, Du J, Bydder GM, Chung CB. Conventional and ultrashort time-to-echo magnetic resonance imaging of articular cartilage, meniscus, and intervertebral disk. Top Magn Reson Imaging 2010; 21 (5) 275-289
  • 115 Gatehouse PD, He T, Puri BK, Thomas RD, Resnick D, Bydder GM. Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones. Br J Radiol 2004; 77 (920) 641-647
  • 116 Omoumi P, Bae WC, Du J , et al. Meniscal calcifications: morphologic and quantitative evaluation by using 2D inversion-recovery ultrashort echo time and 3D ultrashort echo time 3.0-T MR imaging techniques—feasibility study. Radiology 2012; 264 (1) 260-268
  • 117 Williams A, Qian Y, Golla S, Chu CR. UTE-T2∗ mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear. Osteoarthritis Cartilage 2012; 20 (6) 486-494
  • 118 Du J, Diaz E, Carl M, Bae W, Chung CB, Bydder GM. Ultrashort echo time imaging with bicomponent analysis. Magn Reson Med 2012; 67 (3) 645-649
  • 119 Juras V, Apprich S, Szomolanyi P, Bieri O, Deligianni X, Trattnig S. Bi-exponential T2 analysis of healthy and diseased Achilles tendons: an in vivo preliminary magnetic resonance study and correlation with clinical score. Eur Radiol 2013; 23 (10) 2814-2822
  • 120 Bartko D, Lacková M, Modravý V. Complications of carotid arteriographies. Analysis of 1022 cases [in Slovak]. Cesk Neurol Neurochir 1974; 37 (6) 357-363
  • 121 Koff MF, Pownder SL, Shah PH, Yang LW, Potter HG. Ultrashort echo imaging of cyclically loaded rabbit patellar tendon. J Biomech 2014; 47 (13) 3428-3432
  • 122 Lee YH, Kim S, Song HT, Kim I, Suh JS. Weighted subtraction in 3D ultrashort echo time (UTE) imaging for visualization of short T2 tissues of the knee. Acta Radiol 2014; 55 (4) 454-461
  • 123 Thomas PA, Earlam RJ. The action of gastro-intestinal polypeptide hormones on the isolated perfused gastro-oesophageal sphincter. Br J Surg 1973; 60 (4) 306
  • 124 Akella SV, Regatte RR, Gougoutas AJ , et al. Proteoglycan-induced changes in T1rho-relaxation of articular cartilage at 4T. Magn Reson Med 2001; 46 (3) 419-423
  • 125 Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthritis Cartilage 2015; 23 (10) 1639-1653
  • 126 Stahl R, Luke A, Li X , et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—a 3.0-Tesla MRI study. Eur Radiol 2009; 19 (1) 132-143
  • 127 Pakin SK, Schweitzer ME, Regatte RR. 3D-T1rho quantitation of patellar cartilage at 3.0T. J Magn Reson Imaging 2006; 24 (6) 1357-1363
  • 128 Bolbos RI, Zuo J, Banerjee S , et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage 2008; 16 (10) 1150-1159
  • 129 Zarins ZA, Bolbos RI, Pialat JB , et al. Cartilage and meniscus assessment using T1rho and T2 measurements in healthy subjects and patients with osteoarthritis. Osteoarthritis Cartilage 2010; 18 (11) 1408-1416
  • 130 Nishioka H, Hirose J, Nakamura E , et al. Detecting ICRS grade 1 cartilage lesions in anterior cruciate ligament injury using T1ρ and T2 mapping. Eur J Radiol 2013; 82 (9) 1499-1505
  • 131 Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 1996; 36 (5) 665-673
  • 132 Burstein D, Velyvis J, Scott KT , et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 2001; 45 (1) 36-41
  • 133 Owman H, Tiderius CJ, Neuman P, Nyquist F, Dahlberg LE. Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum 2008; 58 (6) 1727-1730
  • 134 Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 2003; 49 (3) 488-492
  • 135 Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum 2005; 52 (11) 3528-3535
  • 136 Neuman P, Tjörnstrand J, Svensson J , et al. Longitudinal assessment of femoral knee cartilage quality using contrast enhanced MRI (dGEMRIC) in patients with anterior cruciate ligament injury—comparison with asymptomatic volunteers. Osteoarthritis Cartilage 2011; 19 (8) 977-983
  • 137 Wheaton AJ, Borthakur A, Shapiro EM , et al. Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging—feasibility study. Radiology 2004; 231 (3) 900-905
  • 138 Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging 2013; 38 (3) 511-529
  • 139 Reddy R, Insko EK, Noyszewski EA, Dandora R, Kneeland JB, Leigh JS. Sodium MRI of human articular cartilage in vivo. Magn Reson Med 1998; 39 (5) 697-701
  • 140 Shapiro EM, Borthakur A, Gougoutas A, Reddy R. 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 2002; 47 (2) 284-291
  • 141 Madelin G, Babb J, Xia D , et al. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology 2013; 268 (2) 481-491
  • 142 Widhalm HK, Apprich S, Welsch GH , et al. Optimized cartilage visualization using 7-T sodium ((23)Na) imaging after patella dislocation. Knee Surg Sports Traumatol Arthrosc 2016; 24 (5) 1601-1609
  • 143 Schleich C, Bittersohl B, Miese F , et al. Glycosaminoglycan chemical exchange saturation transfer at 3T MRI in asymptomatic knee joints. Acta Radiologica 2016; 57 (5) 627-632
  • 144 Raya JG. Techniques and applications of in vivo diffusion imaging of articular cartilage. J Magn Reson Imaging 2015; 41 (6) 1487-1504
  • 145 Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 2010; 23 (7) 803-820
  • 146 Meder R, de Visser SK, Bowden JC, Bostrom T, Pope JM. Diffusion tensor imaging of articular cartilage as a measure of tissue microstructure. Osteoarthritis Cartilage 2006; 14 (9) 875-881
  • 147 Raya JG, Melkus G, Adam-Neumair S , et al. Change of diffusion tensor imaging parameters in articular cartilage with progressive proteoglycan extraction. Invest Radiol 2011; 46 (6) 401-409
  • 148 Raya JG, Melkus G, Adam-Neumair S , et al. Diffusion-tensor imaging of human articular cartilage specimens with early signs of cartilage damage. Radiology 2013; 266 (3) 831-841
  • 149 Raya JG, Dettmann E, Notohamiprodjo M, Krasnokutsky S, Abramson S, Glaser C. Feasibility of in vivo diffusion tensor imaging of articular cartilage with coverage of all cartilage regions. Eur Radiol 2014; 24 (7) 1700-1706
  • 150 Ukai T, Sato M, Yamashita T , et al. Diffusion tensor imaging can detect the early stages of cartilage damage: a comparison study. BMC Musculoskelet Disord 2015; 16: 35
  • 151 Guo T, Chen J, Wu B , et al. Use of intravoxel incoherent motion diffusion-weighted imaging in identifying the vascular and avascular zones of human meniscus. J Magn Reson Imaging 2016 ; September 23 (Epub ahead of print)