Subscribe to RSS
DOI: 10.1055/s-0037-1601322
The Cerebellum and Its Wrapping Meninge: Developmental Interplay between Two Major Structures
Publication History
23 December 2016
21 February 2017
Publication Date:
23 March 2017 (online)
Abstract
Meninges have long been considered as a protective and supportive tissue for the central nervous system. Nevertheless, new developmental roles are now attributed to them. The meninges that surround the cerebellum come from the cephalic mesoderm. They are essential for the cerebellum to develop normally. They induce and maintain the basal lamina and glia limitans. In the absence of these structures, the external granular cells of the cerebellum migrate aberrantly and penetrate the subarachnoid space. The molecules involved in the recognition between the cerebellar primordium and the basal lamina belong to two groups in humans: dystroglycan and laminin on the one hand, and GPR56 and collagen III on the other. Finally, molecules secreted by the meninges and acting on the cerebellum begin to be demonstrated; such is the case of SDF1 secreted under the action of FOXC1.
-
References
- 1 Schachenmayr W, Friede RL. The origin of subdural neomembranes. I. Fine structure of the dura-arachnoid interface in man. Am J Pathol 1978; 92 (01) 53-68
- 2 Nabeshima S, Reese TS, Landis DMD, Brightman MW. Junctions in the meninges and marginal glia. J Comp Neurol 1975; 164 (02) 127-169
- 3 Haines DE. On the question of a subdural space. Anat Rec 1991; 230 (01) 3-21
- 4 Alcolado R, Weller RO, Parrish EP, Garrod D. The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 1988; 14 (01) 1-17
- 5 Klika E. L'ultrastructure des méninges en ontogenèse de l'homme. Z Mikrosk Anat Forsch 1968; 79 (02) 209-222
- 6 Osaka K, Handa H, Matsumoto S, Yasuda M. Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Childs Brain 1980; 6 (01) 26-38
- 7 O'Rahilly R, Müller F. The meninges in human development. J Neuropathol Exp Neurol 1986; 45 (05) 588-608
- 8 Couly GF, Coltey PM, Le Douarin NM. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 1992; 114 (01) 1-15
- 9 McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM. Development and tissue origins of the mammalian cranial base. Dev Biol 2008; 322 (01) 121-132
- 10 Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM. Tissue origins and interactions in the mammalian skull vault. Dev Biol 2002; 241 (01) 106-116
- 11 Yoshida T, Vivatbutsiri P, Morriss-Kay G, Saga Y, Iseki S. Cell lineage in mammalian craniofacial mesenchyme. Mech Dev 2008; 125 (9-10): 797-808
- 12 Aoto K, Sandell LL, Butler Tjaden NE. , et al. Mef2c-F10N enhancer driven b-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells. Dev Biol 2015; 402 (01) 3-16
- 13 Sievers J, Klemm HP, Jenner S, Baumgarten HG, Berry M. Neuronal and extraneuronal effects of intracisternally administered 6-hydroxydopamine on the developing rat brain. J Neurochem 1980; 34 (04) 765-771
- 14 Sievers J, Mangold U, Berry M, Allen C, Schlossberger HG. Experimental studies on cerebellar foliation. I. A qualitative morphological analysis of cerebellar fissuration defects after neonatal treatment with 6-OHDA in the rat. J Comp Neurol 1981; 203 (04) 751-769
- 15 Allen C, Sievers J, Berry M, Jenner S. Experimental studies on cerebellar foliation. II. A morphometric analysis of cerebellar fissuration defects and growth retardation after neonatal treatment with 6-OHDA in the rat. J Comp Neurol 1981; 203 (04) 771-783
- 16 Sievers J, Mangold U, Berry M. 6-OHDA-induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. Genesis and topography. Cell Tissue Res 1983; 230 (02) 309-336
- 17 Sievers H, Sievers J, Baumgarten H-G, König N, Schlossberger HG. Distribution of tritium label in the neonate rat brain following intracisternal or subcutaneous administration of [3H]6-OHDA. An autoradiographic study. Brain Res 1983; 275 (01) 23-45
- 18 Mangold U, Sievers J, Berry M. 6-Hydroxydopamine induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. II. Differentiation of granule cells: a scanning and transmission electron microscopic study. J Comp Neurol 1984; 227 (02) 267-284
- 19 Sievers J, Mangold U, Berry M. 6-OHDA-induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. III. Morphology and synaptic organization of ectopic cerebellar neurons: a scanning and transmission electron microscopic study. J Comp Neurol 1985; 232 (03) 319-330
- 20 von Knebel Doeberitz C, Sievers J, Sadler M, Pehlemann FW, Berry M, Halliwell P. Destruction of meningeal cells over the newborn hamster cerebellum with 6-hydroxydopamine prevents foliation and lamination in the rostral cerebellum. Neuroscience 1986; 17 (02) 409-426
- 21 Sievers J, von Knebel Doeberitz C, Pehlemann F-W, Berry M. Meningeal cells influence cerebellar development over a critical period. Anat Embryol (Berl) 1986; 175 (01) 91-100
- 22 Sievers J, Pehlemann FW, Gude S, Berry M. A time course study of the alterations in the development of the hamster cerebellar cortex after destruction of the overlying meningeal cells with 6-hydroxydopamine on the day of birth. J Neurocytol 1994; 23 (02) 117-134
- 23 Sievers J, Pehlemann FW, Gude S, Berry M. Meningeal cells organize the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol 1994; 23 (02) 135-149
- 24 Hartmann D, Ziegenhagen MW, Sievers J. Meningeal cells stimulate neuronal migration and the formation of radial glial fascicles from the cerebellar external granular layer. Neurosci Lett 1998; 244 (03) 129-132
- 25 Hartmann D, Schulze M, Sievers J. Meningeal cells stimulate and direct the migration of cerebellar external granule cells in vitro. J Neurocytol 1998; 27 (06) 395-409
- 26 Ma Q, Jones D, Borghesani PR. , et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A 1998; 95 (16) 9448-9453
- 27 Zou Y-R, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393 (6685): 595-599
- 28 McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 1999; 213 (02) 442-456
- 29 Tham TN, Lazarini F, Franceschini IA, Lachapelle F, Amara A, Dubois-Dalcq M. Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system. Eur J Neurosci 2001; 13 (05) 845-856
- 30 Reiss K, Mentlein R, Sievers J, Hartmann D. Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 2002; 115 (01) 295-305
- 31 Tissir F, Wang C-E, Goffinet AM. Expression of the chemokine receptor Cxcr4 mRNA during mouse brain development. Brain Res Dev Brain Res 2004; 149 (01) 63-71
- 32 Zhu Y, Yu T, Zhang X-C, Nagasawa T, Wu JY, Rao Y. Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci 2002; 5 (08) 719-720
- 33 Dambska M, Wisniewski K, Sher JH. Lissencephaly: two distinct clinico-pathological types. Brain Dev 1983; 5 (03) 302-310
- 34 Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135 (Pt 5): 1348-1369
- 35 Takada K, Nakamura H, Tanaka J. Cortical dysplasia in congenital muscular dystrophy with central nervous system involvement (Fukuyama type). J Neuropathol Exp Neurol 1984; 43 (04) 395-407
- 36 Lyon G, Raymond G, Mogami K, Gadisseux J-F, Della Giustina E. Disorder of cerebellar foliation in Walker's lissencephaly and neu-laxova syndrome. J Neuropathol Exp Neurol 1993; 52 (06) 633-639
- 37 Haltia M, Leivo I, Somer H. , et al. Muscle-eye-brain disease: a neuropathological study. Ann Neurol 1997; 41 (02) 173-180
- 38 Takada K, Nakamura H. Cerebellar micropolygyria in Fukuyama congenital muscular dystrophy: observations in fetal and pediatric cases. Brain Dev 1990; 12 (06) 774-778
- 39 Barkovich AJ. Neuroimaging manifestations and classification of congenital muscular dystrophies. AJNR Am J Neuroradiol 1998; 19 (08) 1389-1396
- 40 Aida N, Yagishita A, Takada K, Katsumata Y. Cerebellar MR in Fukuyama congenital muscular dystrophy: polymicrogyria with cystic lesions. AJNR Am J Neuroradiol 1994; 15 (09) 1755-1759
- 41 van der Knaap MS, Smit LM, Barth PG. , et al. Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities. Ann Neurol 1997; 42 (01) 50-59
- 42 Valanne L, Pihko H, Katevuo K, Karttunen P, Somer H, Santavuori P. MRI of the brain in muscle-eye-brain (MEB) disease. Neuroradiology 1994; 36 (06) 473-476
- 43 Hewitt JE. Abnormal glycosylation of dystroglycan in human genetic disease. Biochim Biophys Acta 2009; 1792 (09) 853-861
- 44 Montanaro F, Lindenbaum M, Carbonetto S. alpha-Dystroglycan is a laminin receptor involved in extracellular matrix assembly on myotubes and muscle cell viability. J Cell Biol 1999; 145 (06) 1325-1340
- 45 Henion TR, Qu Q, Smith FI. Expression of dystroglycan, fukutin and POMGnT1 during mouse cerebellar development. Brain Res Mol Brain Res 2003; 112 (1-2): 177-181
- 46 Williamson RA, Henry MD, Daniels KJ. , et al. Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. Hum Mol Genet 1997; 6 (06) 831-841
- 47 Geis T, Marquard K, Rödl T. , et al. Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 2013; 14 (3-4): 205-213
- 48 Riemersma M, Mandel H, van Beusekom E. , et al. Absence of a- and b-dystroglycan is associated with Walker-Warburg syndrome. Neurology 2015; 84 (21) 2177-2182
- 49 Moore SA, Saito F, Chen J. , et al. Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 2002; 418 (6896): 422-425
- 50 Satz JS, Barresi R, Durbeej M. , et al. Brain and eye malformations resembling Walker-Warburg syndrome are recapitulated in mice by dystroglycan deletion in the epiblast. J Neurosci 2008; 28 (42) 10567-10575
- 51 Satz JS, Ostendorf AP, Hou S. , et al. Distinct functions of glial and neuronal dystroglycan in the developing and adult mouse brain. J Neurosci 2010; 30 (43) 14560-14572
- 52 Nguyen H, Ostendorf AP, Satz JS. , et al. Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins. Acta Neuropathol Commun 2013; 1: 58
- 53 Willer T, Prados B, Falcón-Pérez JM. , et al. Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc Natl Acad Sci U S A 2004; 101 (39) 14126-14131
- 54 Hu H, Li J, Gagen CS. , et al. Conditional knockout of protein O-mannosyltransferase 2 reveals tissue-specific roles of O-mannosyl glycosylation in brain development. J Comp Neurol 2011; 519 (07) 1320-1337
- 55 Kurahashi H, Taniguchi M, Meno C. , et al. Basement membrane fragility underlies embryonic lethality in fukutin-null mice. Neurobiol Dis 2005; 19 (1-2): 208-217
- 56 Liu J, Ball SL, Yang Y. , et al. A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech Dev 2006; 123 (03) 228-240
- 57 Holzfeind PJ, Grewal PK, Reitsamer HA. , et al. Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Large(myd) mouse defines a natural model for glycosylation-deficient muscle - eye - brain disorders. Hum Mol Genet 2002; 11 (21) 2673-2687
- 58 Michele DE, Barresi R, Kanagawa M. , et al. Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 2002; 418 (6896): 417-422
- 59 Li X, Zhang P, Yang Y, Xiong Y, Qi Y, Hu H. Differentiation and developmental origin of cerebellar granule neuron ectopia in protein O-mannose UDP-N-acetylglucosaminyl transferase 1 knockout mice. Neuroscience 2008; 152 (02) 391-406
- 60 Poretti A, Häusler M, von Moers A. , et al. Ataxia, intellectual disability, and ocular apraxia with cerebellar cysts: a new disease?. Cerebellum 2014; 13 (01) 79-88
- 61 Aldinger KA, Mosca SJ, Tétreault M. , et al; University of Washington Center for Mendelian Genomics; Care4Rare Canada. Mutations in LAMA1 cause cerebellar dysplasia and cysts with and without retinal dystrophy. Am J Hum Genet 2014; 95 (02) 227-234
- 62 Micalizzi A, Poretti A, Romani M. , et al. Clinical, neuroradiological and molecular characterization of cerebellar dysplasia with cysts (Poretti-Boltshauser syndrome). Eur J Hum Genet 2016; 24 (09) 1262-1267
- 63 Vilboux T, Malicdan MCV, Chang YM. , et al; NISC Comparative Sequencing Program. Cystic cerebellar dysplasia and biallelic LAMA1 mutations: a lamininopathy associated with tics, obsessive compulsive traits and myopia due to cell adhesion and migration defects. J Med Genet 2016; 53 (05) 318-329
- 64 Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development 2004; 131 (10) 2247-2256
- 65 Alpy F, Jivkov I, Sorokin L. , et al. Generation of a conditionally null allele of the laminin alpha1 gene. Genesis 2005; 43 (02) 59-70
- 66 Heng C, Lefebvre O, Klein A. , et al. Functional role of laminin a1 chain during cerebellum development. Cell Adhes Migr 2011; 5 (06) 480-489
- 67 Ichikawa-Tomikawa N, Ogawa J, Douet V. , et al. Laminin a1 is essential for mouse cerebellar development. Matrix Biol 2012; 31 (01) 17-28
- 68 Radmanesh F, Caglayan AO, Silhavy JL. , et al. Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities. Am J Hum Genet 2013; 92 (03) 468-474
- 69 Barak T, Kwan KY, Louvi A. , et al. Recessive LAMC3 mutations cause malformations of occipital cortical development. Nat Genet 2011; 43 (06) 590-594
- 70 Harbord MG, Boyd S, Hall-Craggs MA, Kendall B, McShane MA, Baraitser M. Ataxia, developmental delay and an extensive neuronal migration abnormality in 2 siblings. Neuropediatrics 1990; 21 (04) 218-221
- 71 Piao X, Hill RS, Bodell A. , et al. G protein-coupled receptor-dependent development of human frontal cortex. Science 2004; 303 (5666): 2033-2036
- 72 Piao X, Chang BS, Bodell A. , et al. Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann Neurol 2005; 58 (05) 680-687
- 73 Bahi-Buisson N, Poirier K, Boddaert N. , et al. GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain 2010; 133 (11) 3194-3209
- 74 Quattrocchi CC, Zanni G, Napolitano A. , et al. Conventional magnetic resonance imaging and diffusion tensor imaging studies in children with novel GPR56 mutations: further delineation of a cobblestone-like phenotype. Neurogenetics 2013; 14 (01) 77-83
- 75 Luo R, Jeong S-J, Jin Z, Strokes N, Li S, Piao X. G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 2011; 108 (31) 12925-12930
- 76 Jeong S-J, Li S, Luo R, Strokes N, Piao X. Loss of Col3a1, the gene for Ehlers-Danlos syndrome type IV, results in neocortical dyslamination. PLoS One 2012; 7 (01) e29767 . Doi: 10.1371/journal.pone.0029767
- 77 Plancke A, Holder-Espinasse M, Rigau V, Manouvrier S, Claustres M, Khau Van Kien P. Homozygosity for a null allele of COL3A1 results in recessive Ehlers-Danlos syndrome. Eur J Hum Genet 2009; 17 (11) 1411-1416
- 78 Aldinger KA, Lehmann OJ, Hudgins L. , et al. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet 2009; 41 (09) 1037-1042
- 79 Haldipur P, Gillies GS, Janson OK. , et al. Foxc1 dependent mesenchymal signalling drives embryonic cerebellar growth. eLife 2014; 3: e03962 . Doi: 10.7554/elife.03962