Neuropediatrics 2017; 48(03): 135-142
DOI: 10.1055/s-0037-1601448
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Autosomal Recessive Primary Microcephaly (MCPH): An Update

Sami Zaqout
1   Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
2   Center for Chronically Sick Children (Sozialpädiatrisches Zentrum), Charité – Universitätsmedizin Berlin, Berlin, Germany
3   Berlin Institute of Health, Berlin, Germany
4   Department of Pediatric Neurology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
,
Deborah Morris-Rosendahl
5   Clinical Genetics and Genomics, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
6   National Heart and Lung Institute, Imperial College London, London, United Kingdom
,
Angela M. Kaindl
1   Institute of Cell Biology and Neurobiology, Charité – Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
2   Center for Chronically Sick Children (Sozialpädiatrisches Zentrum), Charité – Universitätsmedizin Berlin, Berlin, Germany
3   Berlin Institute of Health, Berlin, Germany
4   Department of Pediatric Neurology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
› Author Affiliations
Further Information

Publication History

09 December 2016

21 February 2017

Publication Date:
11 April 2017 (online)

Abstract

Autosomal recessive primary microcephaly (MCPH; MicroCephaly Primary Hereditary) is a genetically heterogeneous neurodevelopmental disorder characterized by a significantly reduced head circumference present already at birth and intellectual disability. Inconsistent features include hyperactivity, an expressive speech disorder, and epilepsy. Here, we provide a brief overview on this rare disorder pertinent for clinicians.

Authors' Contributions

All authors wrote and approved the final article.


 
  • References

  • 1 Kaindl AM, Passemard S, Kumar P , et al. Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol 2010; 90 (3) 363-383
  • 2 Opitz JM, Holt MC. Microcephaly: general considerations and aids to nosology. J Craniofac Genet Dev Biol 1990; 10 (2) 175-204
  • 3 Woods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet 2005; 76 (5) 717-728
  • 4 Kleber de Oliveira W, Cortez-Escalante J, De Oliveira WT , et al. Increase in reported prevalence of microcephaly in infants born to women living in areas with confirmed Zika virus transmission during the first trimester of pregnancy - Brazil, 2015. MMWR Morb Mortal Wkly Rep 2016; 65 (9) 242-247
  • 5 Van Den Bosch J. Microcephaly in the Netherlands: a clinical and genetical study. Ann Hum Genet 1959; 23 (2) 91-116
  • 6 Jackson AP, McHale DP, Campbell DA , et al. Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am J Hum Genet 1998; 63 (2) 541-546
  • 7 Tunca Y, Vurucu S, Parma J , et al. Prenatal diagnosis of primary microcephaly in two consanguineous families by confrontation of morphometry with DNA data. Prenat Diagn 2006; 26 (5) 449-453
  • 8 Kraemer N, Picker-Minh S, Abbasi AA , et al. Genetic causes of MCPH in consanguineous Pakistani families. Clin Genet 2016; 89 (6) 744-745
  • 9 Passemard S, Titomanlio L, Elmaleh M , et al. Expanding the clinical and neuroradiologic phenotype of primary microcephaly due to ASPM mutations. Neurology 2009; 73 (12) 962-969
  • 10 Bhat V, Girimaji SC, Mohan G , et al. Mutations in WDR62, encoding a centrosomal and nuclear protein, in Indian primary microcephaly families with cortical malformations. Clin Genet 2011; 80 (6) 532-540
  • 11 Verloes A, Drunat S, Gressens P, Passemard S. Primary Autosomal Recessive Microcephalies and Seckel Syndrome Spectrum Disorders. Pagon RA, Adam MP, Ardinger HH. , et al. Seattle, WA: GeneReviews(R; 1993
  • 12 Trimborn M, Bell SM, Felix C , et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet 2004; 75 (2) 261-266
  • 13 Al-Dosari MS, Shaheen R, Colak D, Alkuraya FS. Novel CENPJ mutation causes Seckel syndrome. J Med Genet 2010; 47 (6) 411-414
  • 14 Kalay E, Yigit G, Aslan Y , et al. CEP152 is a genome maintenance protein disrupted in Seckel syndrome. Nat Genet 2011; 43 (1) 23-26
  • 15 Mirzaa GM, Vitre B, Carpenter G , et al. Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism. Hum Genet 2014; 133 (8) 1023-1039
  • 16 Issa L, Mueller K, Seufert K , et al. Clinical and cellular features in patients with primary autosomal recessive microcephaly and a novel CDK5RAP2 mutation. Orphanet J Rare Dis 2013; 8: 59-73
  • 17 Pagnamenta AT, Murray JE, Yoon G , et al. A novel nonsense CDK5RAP2 mutation in a Somali child with primary microcephaly and sensorineural hearing loss. Am J Med Genet A 2012; 158A (10) 2577-2582
  • 18 Yu TW, Mochida GH, Tischfield DJ , et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet 2010; 42 (11) 1015-1020
  • 19 Desir J, Cassart M, David P, Van Bogaert P, Abramowicz M. Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre- and post-natally. Am J Med Genet A 2008; 146A (11) 1439-1443
  • 20 Bilgüvar K, Oztürk AK, Louvi A , et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 2010; 467 (7312): 207-210
  • 21 Passemard S, Verloes A, Billette de Villemeur T , et al. Abnormal spindle-like microcephaly-associated (ASPM) mutations strongly disrupt neocortical structure but spare the hippocampus and long-term memory. Cortex 2016; 74: 158-176
  • 22 Sajid Hussain M, Marriam Bakhtiar S, Farooq M , et al. Genetic heterogeneity in Pakistani microcephaly families. Clin Genet 2013; 83 (5) 446-451
  • 23 Barbelanne M, Tsang WY. Molecular and cellular basis of autosomal recessive primary microcephaly. BioMed Res Int 2014; 2014: 547986
  • 24 Neitzel H, Neumann LM, Schindler D , et al. Premature chromosome condensation in humans associated with microcephaly and mental retardation: a novel autosomal recessive condition. Am J Hum Genet 2002; 70 (4) 1015-1022
  • 25 Gilbert SL, Dobyns WB, Lahn BT. Genetic links between brain development and brain evolution. Nat Rev Genet 2005; 6 (7) 581-590
  • 26 Hussain MS, Baig SM, Neumann S , et al. CDK6 associates with the centrosome during mitosis and is mutated in a large Pakistani family with primary microcephaly. Hum Mol Genet 2013; 22 (25) 5199-5214
  • 27 Lizarraga SB, Margossian SP, Harris MH , et al. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 2010; 137 (11) 1907-1917
  • 28 Buchman JJ, Tseng HC, Zhou Y, Frank CL, Xie Z, Tsai LH. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 2010; 66 (3) 386-402
  • 29 Fish JL, Kosodo Y, Enard W, Pääbo S, Huttner WB. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci U S A 2006; 103 (27) 10438-10443
  • 30 Pulvers JN, Bryk J, Fish JL , et al. Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc Natl Acad Sci U S A 2010; 107 (38) 16595-16600
  • 31 Fietz SA, Huttner WB. Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol 2011; 21 (1) 23-35
  • 32 Kraemer N, Ravindran E, Zaqout S , et al. Loss of CDK5RAP2 affects neural but not non-neural mESC differentiation into cardiomyocytes. Cell Cycle 2015; 14 (13) 2044-2057
  • 33 Mahmood S, Ahmad W, Hassan MJ. Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 2011; 6: 39-54
  • 34 Pilaz LJ, McMahon JJ, Miller EE , et al. Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron 2016; 89 (1) 83-99
  • 35 Tang H, Hammack C, Ogden SC , et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 2016; 18 (5) 587-590
  • 36 von der Hagen M, Pivarcsi M, Liebe J , et al. Diagnostic approach to microcephaly in childhood: a two-center study and review of the literature. Dev Med Child Neurol 2014; 56 (8) 732-741
  • 37 Kelley RI, Robinson D, Puffenberger EG, Strauss KA, Morton DH. Amish lethal microcephaly: a new metabolic disorder with severe congenital microcephaly and 2-ketoglutaric aciduria. Am J Med Genet 2002; 112 (4) 318-326
  • 38 Ashwal S, Michelson D, Plawner L, Dobyns WB ; Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Practice parameter: evaluation of the child with microcephaly (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2009; 73 (11) 887-897
  • 39 Jouan L, Ouled Amar Bencheikh B, Daoud H , et al. Exome sequencing identifies recessive CDK5RAP2 variants in patients with isolated agenesis of corpus callosum. Eur J Hum Genet 2016; 24 (4) 607-610
  • 40 Yigit G, Brown KE, Kayserili H , et al. Mutations in CDK5RAP2 cause Seckel syndrome. Mol Genet Genomic Med 2015; 3 (5) 467-480
  • 41 Rauch A, Thiel CT, Schindler D , et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 2008; 319 (5864): 816-819
  • 42 O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 2003; 33 (4) 497-501
  • 43 Qvist P, Huertas P, Jimeno S , et al. CtIP mutations cause Seckel and Jawad Syndromes. PLoS Genet 2011; 7 (10) e1002310
  • 44 Faivre L, Le Merrer M, Lyonnet S , et al. Clinical and genetic heterogeneity of Seckel syndrome. Am J Med Genet 2002; 112 (4) 379-383
  • 45 Tibelius A, Marhold J, Zentgraf H , et al. Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J Cell Biol 2009; 185 (7) 1149-1157
  • 46 Majewski F, Goecke TO. Microcephalic osteodysplastic primordial dwarfism type II: report of three cases and review. Am J Med Genet 1998; 80 (1) 25-31
  • 47 Jackson AP, Eastwood H, Bell SM , et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 2002; 71 (1) 136-142
  • 48 Roberts E, Jackson AP, Carradice AC , et al. The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13.1-13.2. Eur J Hum Genet 1999; 7 (7) 815-820
  • 49 Nicholas AK, Khurshid M, Désir J , et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet 2010; 42 (11) 1010-1014
  • 50 Bond J, Roberts E, Springell K , et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet 2005; 37 (4) 353-355
  • 51 Moynihan L, Jackson AP, Roberts E , et al. A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34. Am J Hum Genet 2000; 66 (2) 724-727
  • 52 Genin A, Desir J, Lambert N , et al. Kinetochore KMN network gene CASC5 mutated in primary microcephaly. Hum Mol Genet 2012; 21 (24) 5306-5317
  • 53 Jamieson CR, Govaerts C, Abramowicz MJ. Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am J Hum Genet 1999; 65 (5) 1465-1469
  • 54 Bond J, Roberts E, Mochida GH , et al. ASPM is a major determinant of cerebral cortical size. Nat Genet 2002; 32 (2) 316-320
  • 55 Pattison L, Crow YJ, Deeble VJ , et al. A fifth locus for primary autosomal recessive microcephaly maps to chromosome 1q31. Am J Hum Genet 2000; 67 (6) 1578-1580
  • 56 Jamieson CR, Fryns JP, Jacobs J, Matthijs G, Abramowicz MJ. Primary autosomal recessive microcephaly: MCPH5 maps to 1q25-q32. Am J Hum Genet 2000; 67 (6) 1575-1577
  • 57 Gul A, Hassan MJ, Hussain S, Raza SI, Chishti MS, Ahmad W. A novel deletion mutation in CENPJ gene in a Pakistani family with autosomal recessive primary microcephaly. J Hum Genet 2006; 51 (9) 760-764
  • 58 Leal GF, Roberts E, Silva EO, Costa SM, Hampshire DJ, Woods CG. A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q12.2. J Med Genet 2003; 40 (7) 540-542
  • 59 Kakar N, Ahmad J, Morris-Rosendahl DJ , et al. STIL mutation causes autosomal recessive microcephalic lobar holoprosencephaly. Hum Genet 2015; 134 (1) 45-51
  • 60 Kumar A, Girimaji SC, Duvvari MR, Blanton SH. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am J Hum Genet 2009; 84 (2) 286-290
  • 61 Darvish H, Esmaeeli-Nieh S, Monajemi GB , et al. A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. J Med Genet 2010; 47 (12) 823-828
  • 62 Hussain MS, Baig SM, Neumann S , et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am J Hum Genet 2012; 90 (5) 871-878
  • 63 Guernsey DL, Jiang H, Hussin J , et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am J Hum Genet 2010; 87 (1) 40-51
  • 64 Yang YJ, Baltus AE, Mathew RS , et al. Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation. Cell 2012; 151 (5) 1097-1112
  • 65 Awad S, Al-Dosari MS, Al-Yacoub N , et al. Mutation in PHC1 implicates chromatin remodeling in primary microcephaly pathogenesis. Hum Mol Genet 2013; 22 (11) 2200-2213
  • 66 Khan MA, Rupp VM, Orpinell M , et al. A missense mutation in the PISA domain of HsSAS-6 causes autosomal recessive primary microcephaly in a large consanguineous Pakistani family. Hum Mol Genet 2014; 23 (22) 5940-5949
  • 67 Alakbarzade V, Hameed A, Quek DQ , et al. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat Genet 2015; 47 (7) 814-817
  • 68 Guemez-Gamboa A, Nguyen LN, Yang H , et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet 2015; 47 (7) 809-813
  • 69 Yamamoto S, Jaiswal M, Charng WL , et al. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 2014; 159 (1) 200-214
  • 70 Harding BN, Moccia A, Drunat S , et al. Mutations in citron kinase cause recessive microlissencephaly with multinucleated neurons. Am J Hum Genet 2016; 99 (2) 511-520
  • 71 Basit S, Al-Harbi KM, Alhijji SA , et al. CIT, a gene involved in neurogenic cytokinesis, is mutated in human primary microcephaly. Hum Genet 2016; 135 (10) 1199-1207
  • 72 Li H, Bielas SL, Zaki MS , et al. Biallelic mutations in citron kinase link mitotic cytokinesis to human primary microcephaly. Am J Hum Genet 2016; 99 (2) 501-510
  • 73 Shaheen R, Hashem A, Abdel-Salam GM, Al-Fadhli F, Ewida N, Alkuraya FS. Mutations in CIT, encoding citron rho-interacting serine/threonine kinase, cause severe primary microcephaly in humans. Hum Genet 2016; 135 (10) 1191-1197