Clin Colon Rectal Surg 2018; 31(03): 147-152
DOI: 10.1055/s-0037-1602234
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Update on Sporadic Colorectal Cancer Genetics

Karin M. Hardiman
1   Division of Colon and Rectal Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
01. April 2018 (online)

Abstract

Our understanding of the genetics of colorectal cancer has changed dramatically over recent years. Colorectal cancer can be classified in multiple different ways. Along with the advent of whole-exome sequencing, we have gained an understanding of the scale of the genetic changes found in sporadic colorectal cancer. We now know that there are multiple pathways that are commonly involved in the evolution of colorectal cancer including Wnt/β-catenin, RAS, EGFR, and PIK3 kinase. Another recent leap in our understanding of colorectal cancer genetics is the recognition that many, if not all tumors, are actually genetically heterogeneous within individual tumors and also between tumors. Recent research has revealed the prognostic and possibly therapeutic implications of various specific mutations, including specific mutations in BRAF and KRAS. There is increasing interest in the use of mutation testing for screening and surveillance through stool and circulating DNA testing. Recent advances in translational research in colorectal cancer genetics are dramatically changing our understanding of colorectal cancer and will likely change therapy and surveillance in the near future.

 
  • References

  • 1 Fuchs CS, Giovannucci EL, Colditz GA, Hunter DJ, Speizer FE, Willett WC. A prospective study of family history and the risk of colorectal cancer. N Engl J Med 1994; 331 (25) 1669-1674
  • 2 Bellido F, Pineda M, Aiza G. , et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genet Med 2016; 18 (04) 325-332
  • 3 Stoffel EM, Mangu PB, Limburg PJ. ; American Society of Clinical Oncology; European Society for Medical Oncology. Hereditary colorectal cancer syndromes: American Society of Clinical Oncology clinical practice guideline endorsement of the familial risk-colorectal cancer: European Society for Medical Oncology clinical practice guidelines. J Oncol Pract 2015; 11 (03) e437-e441
  • 4 Armelao F, de Pretis G. Familial colorectal cancer: a review. World J Gastroenterol 2014; 20 (28) 9292-9298
  • 5 Jass JR, Iino H, Ruszkiewicz A. , et al. Neoplastic progression occurs through mutator pathways in hyperplastic polyposis of the colorectum. Gut 2000; 47 (01) 43-49
  • 6 Mäkinen MJ, George SM, Jernvall P, Mäkelä J, Vihko P, Karttunen TJ. Colorectal carcinoma associated with serrated adenoma--prevalence, histological features, and prognosis. J Pathol 2001; 193 (03) 286-294
  • 7 Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 2011; 8 (12) 686-700
  • 8 Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009; 458 (7239): 719-724
  • 9 Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol 2011; 6: 479-507
  • 10 Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 2007; 50 (01) 113-130
  • 11 Bogaert J, Prenen H. Molecular genetics of colorectal cancer. Ann Gastroenterol 2014; 27 (01) 9-14
  • 12 Carethers JM, Jung BH. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology 2015; 149 (05) 1177-1190.e3
  • 13 Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010; 138 (06) 2059-2072
  • 14 Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 1999; 96 (15) 8681-8686
  • 15 Hinoue T, Weisenberger DJ, Lange CP. , et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 2012; 22 (02) 271-282
  • 16 Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61 (05) 759-767
  • 17 Smith G, Carey FA, Beattie J. , et al. Mutations in APC, Kirsten-ras, and p53--alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci U S A 2002; 99 (14) 9433-9438
  • 18 Fearon ER, Hamilton SR, Vogelstein B. Clonal analysis of human colorectal tumors. Science 1987; 238 (4824): 193-197
  • 19 Lin EI, Tseng LH, Gocke CD. , et al. Mutational profiling of colorectal cancers with microsatellite instability. Oncotarget 2015; 6 (39) 42334-42344
  • 20 Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487 (7407): 330-337
  • 21 Mei ZB, Duan CY, Li CB, Cui L, Ogino S. Prognostic role of tumor PIK3CA mutation in colorectal cancer: a systematic review and meta-analysis. Ann Oncol 2016; 27 (10) 1836-1848
  • 22 Saif MW, Chu E. Biology of colorectal cancer. Cancer J 2010; 16 (03) 196-201
  • 23 Korphaisarn K, Kopetz S. BRAF-directed therapy in metastatic colorectal cancer. Cancer J 2016; 22 (03) 175-178
  • 24 Ooi A, Takehana T, Li X. , et al. Protein overexpression and gene amplification of HER-2 and EGFR in colorectal cancers: an immunohistochemical and fluorescent in situ hybridization study. Mod Pathol 2004; 17 (08) 895-904
  • 25 Bellam N, Pasche B. Tgf-beta signaling alterations and colon cancer. Cancer Treat Res 2010; 155: 85-103
  • 26 Robles AI, Traverso G, Zhang M. , et al. Whole-exome sequencing analyses of inflammatory bowel disease-associated colorectal cancers. Gastroenterology 2016; 150 (04) 931-943
  • 27 Lawrence MS, Stojanov P, Mermel CH. , et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505 (7484): 495-501
  • 28 Nowell PC. The clonal evolution of tumor cell populations. Science 1976; 194 (4260): 23-28
  • 29 Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008; 9: 387-402
  • 30 Rothberg JM, Hinz W, Rearick TM. , et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011; 475 (7356): 348-352
  • 31 Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012; 481 (7381): 306-313
  • 32 Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res 2012; 72 (19) 4875-4882
  • 33 Gerlinger M, Rowan AJ, Horswell S. , et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366 (10) 883-892
  • 34 Nik-Zainal S, Van Loo P, Wedge DC. , et al; Breast Cancer Working Group of the International Cancer Genome Consortium. The life history of 21 breast cancers. Cell 2012; 149 (05) 994-1007
  • 35 Landau DA, Carter SL, Stojanov P. , et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152 (04) 714-726
  • 36 Sottoriva A, Spiteri I, Piccirillo SG. , et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 2013; 110 (10) 4009-4014
  • 37 Yachida S, Jones S, Bozic I. , et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467 (7319): 1114-1117
  • 38 Miller CA, White BS, Dees ND. , et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLOS Comput Biol 2014; 10 (08) e1003665
  • 39 Sottoriva A, Kang H, Ma Z. , et al. A Big Bang model of human colorectal tumor growth. Nat Genet 2015; 47 (03) 209-216
  • 40 Diaz Jr LA, Williams RT, Wu J. , et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012; 486 (7404): 537-540
  • 41 Losi L, Baisse B, Bouzourene H, Benhattar J. Evolution of intratumoral genetic heterogeneity during colorectal cancer progression. Carcinogenesis 2005; 26 (05) 916-922
  • 42 Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res 2010; 16 (03) 790-799
  • 43 Hardiman KM, Ulintz PJ, Kuick RD. , et al. Intra-tumor genetic heterogeneity in rectal cancer. Lab Invest 2016; 96 (01) 4-15
  • 44 Mekenkamp LJ, Haan JC, Israeli D. , et al. Chromosomal copy number aberrations in colorectal metastases resemble their primary counterparts and differences are typically non-recurrent. PLoS One 2014; 9 (02) e86833
  • 45 Kim TM, Jung SH, An CH. , et al. Subclonal genomic architectures of primary and metastatic colorectal cancer based on intratumoral genetic heterogeneity. Clin Cancer Res 2015; 21 (19) 4461-4472
  • 46 Imperiale TF, Ransohoff DF, Itzkowitz SH. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 2014; 371 (02) 187-188
  • 47 Diaz Jr LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 2014; 32 (06) 579-586
  • 48 De Roock W, Claes B, Bernasconi D. , et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010; 11 (08) 753-762
  • 49 Tol J, Dijkstra JR, Klomp M. , et al. Markers for EGFR pathway activation as predictor of outcome in metastatic colorectal cancer patients treated with or without cetuximab. Eur J Cancer 2010; 46 (11) 1997-2009
  • 50 Le DT, Uram JN, Wang H. , et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372 (26) 2509-2520