Subscribe to RSS
DOI: 10.1055/s-0037-1602412
Nontraumatic Emergency of the Spine
Publication History
Publication Date:
01 June 2017 (online)
Abstract
Nontraumatic spinal emergencies can have many different causes. Clinical symptoms may be nonspecific, and therefore radiology plays a key role in diagnosing and managing these patients. There is considerable time pressure in these situations because the development of irreversible myelopathy depends not only on the cause but also on the time elapsed between the start of compression and the decompression. To avoid structural cord damage, decompression should be done within 6 to 8 hours after the start of the compression. If patients still walk when the lesion is detected, they have a 90 to 100% chance of walking when the lesion is treated immediately.
Magnetic resonance imaging is the primary method for the evaluation of spinal emergencies. An appropriate fast protocol should be used, adding some special sequences depending on the clinical scenario.
In this review we use a simple anatomical approach that can be applied in an acute practical clinical setting, allowing an accurate differential diagnosis that will guide subsequent therapeutic actions. We highlight key radiologic features that will help nonspecialized radiologists make a precise diagnosis.
-
References
- 1 Quint DJ, Provenzale J, Deveikis JP. Emergency MR imaging of the central nervous system. Emerg Radiol 1999; 6 (03) 133-142
- 2 De Michaelis BJ, El-Khoury GY. Nontraumatic spine disorders: part I. Emerg Radiol 2000; 7: 65-73
- 3 Brandse EA, Burrows SL. Nontraumatic spine disorders: part II. Emerg Radiol 2000; 7 (02) 74-84
- 4 Latarjet M, Liard AR. Anatomia Humana. 4th ed. Buenos Aires, Argentina: Editorial Médica Panamericana; 2005: 143-150
- 5 Gray H. Anatomy of the Human Body. 20th ed. New York, NY: Bartleby.com; 2000. Available at: http://www.bartleby.com/107/193.html . Accessed January 2017
- 6 Schünke M, Schulte E, Schumacher U. , et al. Prometheus. Texto y Atlas de Anatomía. 3rd ed. Madrid, Spain: Panamericana editorial médica S.A.; 2015: 186-191
- 7 Mandell J. Core Radiology: A Visual Approach to Diagnostic Imaging. Cambridge, UK: Cambridge University Press; 2013: 328-334
- 8 Thurnher MM, Bammer R. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology 2006; 48 (11) 795-801
- 9 Zhang J, Huan Y, Qian Y, Sun L, Ge Y. Multishot diffusion-weighted imaging features in spinal cord infarction. J Spinal Disord Tech 2005; 18 (03) 277-282
- 10 Baur A, Stäbler A, Brüning R. , et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 1998; 207 (02) 349-356
- 11 Grayev AM, Kissane J, Kanekar S. Imaging approach to the cord T2 hyperintensity (myelopathy). Radiol Clin North Am 2014; 52 (02) 427-446
- 12 Grossman RI, Yousem DM. Neuroradiology: the requisites. 2nd ed. Madrid, Spain: Marban Libros; 2007: 795-837
- 13 Rykken JB, Diehn FE, Hunt CH. , et al. Intramedullary spinal cord metastases: MRI and relevant clinical features from a 13-year institutional case series. AJNR Am J Neuroradiol 2013; 34 (10) 2043-2049
- 14 Koeller KK, Rosenblum RS, Morrison AL. Neoplasms of the spinal cord and filum terminale: radiologic-pathologic correlation. Radiographics 2000; 20 (06) 1721-1749
- 15 Fanous AA, Jost GF, Schmidt MH. A nonenhancing World Health Organization grade II intramedullary spinal ependymoma in the conus: case illustration and review of imaging characteristics. Global Spine J 2012; 2 (01) 57-64
- 16 Yasuda T, Hasegawa T, Yamato Y. , et al. Relationship between spinal hemangioblastoma location and age. Asian Spine J 2016; 10 (02) 309-313
- 17 Houten JK, Cooper PR. Spinal cord astrocytomas: presentation, management and outcome. J Neurooncol 2000; 47 (03) 219-224
- 18 Seo HS, Kim JH, Lee DH. , et al. Nonenhancing intramedullary astrocytomas and other MR imaging features: a retrospective study and systematic review. AJNR Am J Neuroradiol 2010; 31 (03) 498-503
- 19 Smith AB, Soderlund KA, Rushing EJ, Smirniotopolous JG. Radiologic-pathologic correlation of pediatric and adolescent spinal neoplasms: Part 1, Intramedullary spinal neoplasms. AJR Am J Roentgenol 2012; 198 (01) 34-43
- 20 Odia Y. Gangliocytomas and gangliogliomas: review of clinical, pathologic and genetic features. Clin Oncol 2016 . Available at: http://www.clinicsinoncology.com/pdfs_folder/cio-v1-id1017.pdf
- 21 DeSanto J, Ross JS. Spine infection/inflammation. Radiol Clin North Am 2011; 49 (01) 105-127
- 22 Balthazar da Silveira Carvalho G, Barbosa Sandim G, Antônio Tobaru Tibana L. , et al. Magnetic resonance imaging in the differential diagnosis of infectious and inflammatory conus medullaris lesions. Radiol Bras 2013; 46 (01) 51-55
- 23 Sarbu N, Shih RY, Jones RV, Horkayne-Szakaly I, Oleaga L, Smirniotopoulos JG. White matter diseases with radiologic-pathologic correlation. Radiographics 2016; 36 (05) 1426-1447
- 24 Polman CH, Reingold SC, Banwell B. , et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69 (02) 292-302
- 25 Pohl D, Alper G, Van Haren K. , et al. Acute disseminated encephalomyelitis: updates on an inflammatory CNS syndrome. Neurology 2016; 87 (09) (Suppl. 02) S38-S45
- 26 Barnett Y, Sutton IJ, Ghadiri M, Masters L, Zivadinov R, Barnett MH. Conventional and advanced imaging in neuromyelitis optica. AJNR Am J Neuroradiol 2014; 35 (08) 1458-1466
- 27 Chiquete E, Navarro-Bonnet J, Ayala-Armas R. , et al. Neuromyelitis optica: a clinical update [in Spanish]. Rev Neurol 2010; 51 (05) 289-294
- 28 Masson C, Pruvo JP, Meder JF. , et al; Study Group on Spinal Cord Infarction of the French Neurovascular Society. Spinal cord infarction: clinical and magnetic resonance imaging findings and short term outcome. J Neurol Neurosurg Psychiatry 2004; 75 (10) 1431-1435
- 29 Yuh WT, Marsh III EE, Wang AK. , et al. MR imaging of spinal cord and vertebral body infarction. AJNR Am J Neuroradiol 1992; 13 (01) 145-154
- 30 Kulkarni MV, McArdle CB, Kopanicky D. , et al. Acute spinal cord injury: MR imaging at 1.5 T. Radiology 1987; 164 (03) 837-843
- 31 Alblas CL, Bouvy WH, Lycklama À Nijeholt GJ, Boiten J. Acute spinal-cord ischemia: evolution of MRI findings. J Clin Neurol 2012; 8 (03) 218-223
- 32 Vargas MI, Gariani J, Sztajzel R. , et al. Spinal cord ischemia: practical imaging tips, pearls, and pitfalls. AJNR Am J Neuroradiol 2015; 36 (05) 825-830
- 33 Nachanakian A, El Helou A, Abou Chedid G, Alaywan M. Spinal dural arteriovenous fistulas—treatable cause of myelopathy. Arteriovenous fistulas—diagnosis and management. DOI: 10.5772/56725. Available at: http://www.intechopen.com/books/arteriovenous-fistulas-diagnosis-and-management/spinal-dural-arteriovenous-fistulas-treatable-cause-of-myelopathy
- 34 Osborn AG. Diagnostic Neuroradiology. St. Louis, MO: Mosby; 1994
- 35 Farb RI, Kim JK, Willinsky RA. , et al. Spinal dural arteriovenous fistula localization with a technique of first-pass gadolinium-enhanced MR angiography: initial experience. Radiology 2002; 222 (03) 843-850
- 36 Spetzler RF, Detwiler PW, Riina HA, Porter RW. Modified classification of spinal cord vascular lesions. J Neurosurg 2002; 96 (2, Suppl): 145-156
- 37 Kim LJ, Spetzler RF. Classification and surgical management of spinal arteriovenous lesions: arteriovenous fistulae and arteriovenous malformations. Neurosurgery 2006; 59 (05) (Suppl. 03) S195-S201 ; discussion S3–S13
- 38 Deutsch H, Jallo GI, Faktorovich A, Epstein F. Spinal intramedullary cavernoma: clinical presentation and surgical outcome. J Neurosurg 2000; 93 (1, Suppl): 65-70
- 39 Maslehaty H, Barth H, Petridis AK, Doukas A, Mehdorn HM. Symptomatic spinal cavernous malformations: indication for microsurgical treatment and outcome. Eur Spine J 2011; 20 (10) 1765-1770
- 40 Kharkar S, Shuck J, Conway J, Rigamonti D. The natural history of conservatively managed symptomatic intramedullary spinal cord cavernomas. Neurosurgery 2007; 60 (05) 865-872 ; discussion 865–872
- 41 Liang JT, Bao YH, Zhang HQ, Huo LR, Wang ZY, Ling F. Management and prognosis of symptomatic patients with intramedullary spinal cord cavernoma: clinical article. J Neurosurg Spine 2011; 15 (04) 447-456
- 42 Alkhamees A, Proust F. Idiopathic spinal cord herniation: a case report. Int J Health Sci (Qassim) 2016; 10 (04) 592-595
- 43 Parmar H, Park P, Brahma B, Gandhi D. Imaging of idiopathic spinal cord herniation. Radiographics 2008; 28 (02) 511-518
- 44 Haber MD, Nguyen DD, Li S. Differentiation of idiopathic spinal cord herniation from CSF-isointense intraspinal extramedullary lesions displacing the cord. Radiographics 2014; 34 (02) 313-329
- 45 Tali ET, Ercan N, Kaymaz M, Pasaoglu A, Jinkins JR. Intrathecal gadolinium (gadopentetate dimeglumine)-enhanced MR cisternography used to determine potential communication between the cerebrospinal fluid pathways and intracranial arachnoid cysts. Neuroradiology 2004; 46 (09) 744-754
- 46 Albayram S, Kilic F, Ozer H, Baghaki S, Kocer N, Islak C. Gadolinium-enhanced MR cisternography to evaluate dural leaks in intracranial hypotension syndrome. AJNR Am J Neuroradiol 2008; 29 (01) 116-121
- 47 De Verdelhan O, Haegelen C, Carsin-Nicol B. , et al. MR imaging features of spinal schwannomas and meningiomas. J Neuroradiol 2005; 32 (01) 42-49
- 48 Post MJ, Becerra JL, Madsen PW. , et al. Acute spinal subdural hematoma: MR and CT findings with pathologic correlates. AJNR Am J Neuroradiol 1994; 15 (10) 1895-1905
- 49 Crossley RA, Raza A, Adams WM. The lumbar sedimentation sign: spinal MRI findings in patients with subarachnoid haemorrhage with no demonstrable intracranial aneurysm. Br J Radiol 2011; 84 (999) 279-281
- 50 Kim YH, Cho KT, Chung CK, Kim HJ. Idiopathic spontaneous spinal subarachnoid hemorrhage. Spinal Cord 2004; 42 (09) 545-547
- 51 Melzer CC, Fukui MB, Kanal E, Smirniotopoulos JG. MR imaging of the meninges. Part I. Normal anatomic features and nonneoplastic disease. Radiology 1996; 201 (02) 297-308
- 52 Sage MR, Wilson AJ, Scroop R. Contrast media and the brain. The basis of CT and MR imaging enhancement. Neuroimaging Clin N Am 1998; 8 (03) 695-707
- 53 Braun P, Kazmi K, Nogués-Meléndez P, Mas-Estellés F, Aparici-Robles F. MRI findings in spinal subdural and epidural hematomas. Eur J Radiol 2007; 64 (01) 119-125
- 54 Márquez Sánchez P. Spondylodiscitis [in Spanish]. Radiologia 2016; 58 (Suppl. 01) 50-59
- 55 Hong SH, Choi JY, Lee JW, Kim NR, Choi JA, Kang HS. MR imaging assessment of the spine: infection or an imitation?. Radiographics 2009; 29 (02) 599-612
- 56 Cushing AH. Diskitis in children. Clin Infect Dis 1993; 17 (01) 1-6
- 57 Dagirmanjian A, Schils J, McHenry MC. MR imaging of spinal infections. Magn Reson Imaging Clin N Am 1999; 7 (03) 525-538
- 58 Ledermann HP, Schweitzer ME, Morrison WB, Carrino JA. MR imaging findings in spinal infections: rules or myths?. Radiology 2003; 228 (02) 506-514
- 59 Sharif HS. Role of MR imaging in the management of spinal infections. AJR Am J Roentgenol 1992; 158 (06) 1333-1345
- 60 Fardon DF, Williams AL, Dohring EJ, Murtagh FR, Gabriel Rothman SL, Sze GK. Lumbar disc nomenclature: version 2.0: Recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology. Spine J 2014; 14 (11) 2525-2545
- 61 Quencer RM. The abnormal annulus fibrosus: can we infer the acuteness of an annular injury?. AJNR Am J Neuroradiol 2002; 23 (07) 1069
- 62 Baranto A, Hellstrom M, Sward L. Acute injury of an intervertebral disk in an elite tennis player: a case report. Spine (Phila Pa 1976) 2010; 35(6): E223-E227
- 63 Stillerman CB, Chen TC, Couldwell WT, Zhang W, Weiss MH. Experience in the surgical management of 82 symptomatic herniated thoracic discs and review of the literature. J Neurosurg 1998; 88 (04) 623-633
- 64 Hott JS, Feiz-Erfan I, Kenny K, Dickman CA. Surgical management of giant herniated thoracic discs: analysis of 20 cases. J Neurosurg Spine 2005; 3 (03) 191-197
- 65 Diehn FE, Maus TP, Morris JM. , et al. Uncommon manifestations of intervertebral disk pathologic conditions. Radiographics 2016; 36 (03) 801-823
- 66 Suzuki T, Abe E, Murai H, Kobayashi T. Nontraumatic acute complete paraplegia resulting from cervical disc herniation: a case report. Spine 2003; 28 (06) E125-E128
- 67 Bozzao A, Gallucci M, Masciocchi C, Aprile I, Barile A, Passariello R. Lumbar disk herniation: MR imaging assessment of natural history in patients treated without surgery. Radiology 1992; 185 (01) 135-141
- 68 Smith JK, Lury K, Castillo M. Imaging of spinal and spinal cord tumors. Semin Roentgenol 2006; 41 (04) 274-293
- 69 Cañete AN, Bloem HL, Kroon HM. Primary bone tumors of the spine [in Spanish]. Radiologia 2016; 58 (Suppl. 01) 68-80
- 70 Gupta M, Nayak R, Singh H, Khwaja G, Chowdhury D. Pregnancy related symptomatic vertebral hemangioma. Ann Indian Acad Neurol 2014; 17 (01) 120-122
- 71 Murphey MD, Nomikos GC, Flemming DJ, Gannon FH, Temple HT, Kransdorf MJ. From the archives of AFIP. Imaging of giant cell tumor and giant cell reparative granuloma of bone: radiologic-pathologic correlation. Radiographics 2001; 21 (05) 1283-1309
- 72 Harish S, Saifuddin A. Imaging features of spinal osteoid osteoma with emphasis on MRI findings. Eur Radiol 2005; 15 (12) 2396-2403
- 73 Ecker RD, Endo T, Wetjen NM, Krauss WE. Diagnosis and treatment of vertebral column metastases. Mayo Clin Proc 2005; 80 (09) 1177-1186
- 74 Byrne TN. Spinal cord compression from epidural metastases. N Engl J Med 1992; 327 (09) 614-619
- 75 Rodallec MH, Feydy A, Larousserie F. , et al. Diagnostic imaging of solitary tumors of the spine: what to do and say. Radiographics 2008; 28 (04) 1019-1041
- 76 Shah BK, Saifuddin A, Price GJ. Magnetic resonance imaging of spinal plasmacytoma. Clin Radiol 2000; 55 (06) 439-445
- 77 Vilanova JC, Luna A. Bone marrow invasion in multiple myeloma and metastatic disease [in Spanish]. Radiologia 2016; 58 (Suppl. 01) 81-93