Semin Liver Dis 2017; 37(02): 095-108
DOI: 10.1055/s-0037-1602762
The Immune-Inflammation Connection
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Immunotolerance in Liver Transplantation

Sotiris Mastoridis
1   MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
,
Marc Martinez-Llordella
1   MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
,
Alberto Sanchez-Fueyo
1   MRC Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
31 May 2017 (online)

Abstract

The burden of life-long immunosuppressive medication must be overcome if progress is to be made in long-term outcomes following transplantation. The liver exhibits intrinsic tolerogenic properties that contribute to a unique propensity toward spontaneous acceptance when transplanted. Hence, a proportion of liver transplant recipients develop a state of immunotolerance and display persistently normal allograft function despite the discontinuation of immunosuppression. However, this phenomenon remains elusive for the majority of recipients. Investigations performed in experimental models of spontaneous liver allograft tolerance and in clinical cases of immunosuppression-free liver transplant acceptance have yielded mechanistic insights at the heart of recent strategies toward tolerance prediction and promotion. Results from recent clinical trials signal a shift in how liver allograft tolerance is viewed—not an elusive rarity of academic interest, but a potentially relevant clinical opportunity, which can be safely pursued if appropriately targeted.

 
  • References

  • 1 Orlando G, Hematti P, Stratta RJ. , et al. Clinical operational tolerance after renal transplantation: current status and future challenges. Ann Surg 2010; 252 (06) 915-928
  • 2 Calne RY. Immunological tolerance--the liver effect. Immunol Rev 2000; 174 (01) 280-282
  • 3 Doyle HR, Marino IR, Morelli F. , et al. Assessing risk in liver transplantation. Special reference to the significance of a positive cytotoxic crossmatch. Ann Surg 1996; 224 (02) 168-177
  • 4 Sugawara Y, Tamura S, Kaneko J, Togashi J, Makuuchi M, Kokudo N. Positive lymphocytotoxic crossmatch does not adversely affect survival in living donor liver transplantation. Dig Surg 2009; 26 (06) 482-486
  • 5 Olausson M, Mjörnstedt L, Nordén G. , et al. Successful combined partial auxiliary liver and kidney transplantation in highly sensitized cross-match positive recipients. Am J Transplant 2007; 7 (01) 130-136
  • 6 Mazariegos GV, Reyes J, Marino IR. , et al. Weaning of immunosuppression in liver transplant recipients. Transplantation 1997; 63 (02) 243-249
  • 7 Devlin J, Doherty D, Thomson L. , et al. Defining the outcome of immunosuppression withdrawal after liver transplantation. Hepatology 1998; 27 (04) 926-933
  • 8 Girlanda R, Rela M, Williams R, O'Grady JG, Heaton ND. Long-term outcome of immunosuppression withdrawal after liver transplantation. Transplant Proc 2005; 37 (04) 1708-1709
  • 9 Takatsuki M, Uemoto S, Inomata Y. , et al. Analysis of alloreactivity and intragraft cytokine profiles in living donor liver transplant recipients with graft acceptance. Transpl Immunol 2001; 8 (04) 279-286
  • 10 Eason JD, Cohen AJ, Nair S, Alcantera T, Loss GE. Tolerance: is it worth the risk?. Transplantation 2005; 79 (09) 1157-1159
  • 11 Tryphonopoulos P, Tzakis AG, Weppler D. , et al. The role of donor bone marrow infusions in withdrawal of immunosuppression in adult liver allotransplantation. Am J Transplant 2005; 5 (03) 608-613
  • 12 Tisone G, Orlando G, Cardillo A. , et al. Complete weaning off immunosuppression in HCV liver transplant recipients is feasible and favourably impacts on the progression of disease recurrence. J Hepatol 2006; 44 (04) 702-709
  • 13 Assy N, Adams PC, Myers P. , et al. Randomized controlled trial of total immunosuppression withdrawal in liver transplant recipients: role of ursodeoxycholic acid. Transplantation 2007; 83 (12) 1571-1576
  • 14 Pons JA, Revilla-Nuin B, Baroja-Mazo A. , et al. FoxP3 in peripheral blood is associated with operational tolerance in liver transplant patients during immunosuppression withdrawal. Transplantation 2008; 86 (10) 1370-1378
  • 15 Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol 2013; 14 (10) 996-1006
  • 16 Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10 (11) 753-766
  • 17 Lu Y-C, Yeh W-C, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 2008; 42 (02) 145-151
  • 18 Poltorak A, He X, Smirnova I. , et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282 (5396): 2085-2088
  • 19 Catalá M, Antón A, Portolés MT. Characterization of the simultaneous binding of Escherichia coli endotoxin to Kupffer and endothelial liver cells by flow cytometry. Cytometry 1999; 36 (02) 123-130
  • 20 Lumsden AB, Henderson JM, Kutner MH. Endotoxin levels measured by a chromogenic assay in portal, hepatic and peripheral venous blood in patients with cirrhosis. Hepatology 1988; 8 (02) 232-236
  • 21 van Oosten M, van de Bilt E, van Berkel TJ, Kuiper J. New scavenger receptor-like receptors for the binding of lipopolysaccharide to liver endothelial and Kupffer cells. Infect Immun 1998; 66 (11) 5107-5112
  • 22 John B, Crispe IN. TLR-4 regulates CD8+ T cell trapping in the liver. J Immunol 2005; 175 (03) 1643-1650
  • 23 Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Büschenfelde KH, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 1995; 22 (02) 226-229
  • 24 Starzl TE, Demetris AJ, Trucco M. , et al. Cell migration and chimerism after whole-organ transplantation: the basis of graft acceptance. Hepatology 1993; 17 (06) 1127-1152
  • 25 Reyes J, Zeevi A, Ramos H. , et al. Frequent achievement of a drug-free state after orthotopic liver transplantation. Transplant Proc 1993; 25 (06) 3315-3319
  • 26 Calne RY, Sells RA, Pena JR. , et al. Induction of immunological tolerance by porcine liver allografts. Nature 1969; 223 (5205): 472-476
  • 27 Kamada N, Brons G, Davies HS. Fully allogeneic liver grafting in rats induces a state of systemic nonreactivity to donor transplantation antigens. Transplantation 1980; 29 (05) 429-431
  • 28 Qian S, Demetris AJ, Murase N, Rao AS, Fung JJ, Starzl TE. Murine liver allograft transplantation: tolerance and donor cell chimerism. Hepatology 1994; 19 (04) 916-924
  • 29 Houssin D, Gigou M, Franco D. , et al. Specific transplantation tolerance induced by spontaneously tolerated liver allograft in inbred strains of rats. Transplantation 1980; 29 (05) 418-419
  • 30 Zimmermann FA, Davies HS, Knoll PP, Gokel JM, Schmidt T. Orthotopic liver allografts in the rat. The influence of strain combination on the fate of the graft. Transplantation 1984; 37 (04) 406-410
  • 31 Kamada N. The immunology of experimental liver transplantation in the rat. Immunology 1985; 55 (03) 369-389
  • 32 Steger U, Denecke C, Sawitzki B, Karim M, Jones ND, Wood KJ. Exhaustive differentiation of alloreactive CD8+ T cells: critical for determination of graft acceptance or rejection. Transplantation 2008; 85 (09) 1339-1347
  • 33 Li Y, Zhao X, Cheng D. , et al. The presence of Foxp3 expressing T cells within grafts of tolerant human liver transplant recipients. Transplantation 2008; 86 (12) 1837-1843
  • 34 Wahl C, Bochtler P, Chen L, Schirmbeck R, Reimann J. B7-H1 on hepatocytes facilitates priming of specific CD8 T cells but limits the specific recall of primed responses. Gastroenterology 2008; 135 (03) 980-988
  • 35 Bertolino P, Trescol-Biémont M-C, Rabourdin-Combe C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 1998; 28 (01) 221-236
  • 36 Benseler V, Warren A, Vo M. , et al. Hepatocyte entry leads to degradation of autoreactive CD8 T cells. Proc Natl Acad Sci U S A 2011; 108 (40) 16735-16740
  • 37 Qian S, Wang Z, Lee Y. , et al. Hepatocyte-induced apoptosis of activated T cells, a mechanism of liver transplant tolerance, is related to the expression of ICAM-1 and hepatic lectin. Transplant Proc 2001; 33 (1-2): 226
  • 38 Wahl C, Bochtler P, Schirmbeck R, Reimann J. Type I IFN-producing CD4 Valpha14i NKT cells facilitate priming of IL-10-producing CD8 T cells by hepatocytes. J Immunol 2007; 178 (04) 2083-2093
  • 39 Lüth S, Huber S, Schramm C. , et al. Ectopic expression of neural autoantigen in mouse liver suppresses experimental autoimmune neuroinflammation by inducing antigen-specific Tregs. J Clin Invest 2008; 118 (10) 3403-3410
  • 40 Breous E, Somanathan S, Vandenberghe LH, Wilson JM. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 2009; 50 (02) 612-621
  • 41 Heymann F, Peusquens J, Ludwig-Portugall I. , et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 2015; 62 (01) 279-291
  • 42 You Q, Cheng L, Kedl RM, Ju C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 2008; 48 (03) 978-990
  • 43 Onoe T, Ohdan H, Tokita D. , et al. Liver sinusoidal endothelial cells tolerize T cells across MHC barriers in mice. J Immunol 2005; 175 (01) 139-146
  • 44 Tokita D, Shishida M, Ohdan H. , et al. Liver sinusoidal endothelial cells that endocytose allogeneic cells suppress T cells with indirect allospecificity. J Immunol 2006; 177 (06) 3615-3624
  • 45 Carambia A, Freund B, Schwinge D. , et al. TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. J Hepatol 2014; 61 (03) 594-599
  • 46 Tang L, Yang J, Liu W. , et al. Liver sinusoidal endothelial cell lectin, LSECtin, negatively regulates hepatic T-cell immune response. Gastroenterology 2009; 137 (04) 1498-508.e1 , 5
  • 47 Diehl P, Fricke A, Sander L. , et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 2012; 93 (04) 633-644
  • 48 Höchst B, Schildberg FA, Sauerborn P. , et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol 2013; 59 (03) 528-535
  • 49 Schildberg FA, Wojtalla A, Siegmund SV. , et al. Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology 2011; 54 (01) 262-272
  • 50 Yu M-C, Chen C-H, Liang X. , et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 2004; 40 (06) 1312-1321
  • 51 Chen C-H, Kuo L-M, Chang Y. , et al. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology 2006; 44 (05) 1171-1181
  • 52 Castellaneta A, Sumpter TL, Chen L, Tokita D, Thomson AW. NOD2 ligation subverts IFN-alpha production by liver plasmacytoid dendritic cells and inhibits their T cell allostimulatory activity via B7-H1 up-regulation. J Immunol 2009; 183 (11) 6922-6932
  • 53 Matta BM, Raimondi G, Rosborough BR, Sumpter TL, Thomson AW. IL-27 production and STAT3-dependent upregulation of B7-H1 mediate immune regulatory functions of liver plasmacytoid dendritic cells. J Immunol 2012; 188 (11) 5227-5237
  • 54 Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol 2005; 6 (03) 280-286
  • 55 Bamboat ZM, Stableford JA, Plitas G. , et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol 2009; 182 (04) 1901-1911
  • 56 Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 2002; 100 (01) 174-177
  • 57 Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193 (02) 233-238
  • 58 Moseman EA, Liang X, Dawson AJ. , et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J Immunol 2004; 173 (07) 4433-4442
  • 59 Ito T, Yang M, Wang Y-H. , et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 2007; 204 (01) 105-115
  • 60 Xia S, Guo Z, Xu X, Yi H, Wang Q, Cao X. Hepatic microenvironment programs hematopoietic progenitor differentiation into regulatory dendritic cells, maintaining liver tolerance. Blood 2008; 112 (08) 3175-3185
  • 61 Knolle PA. Staying local-antigen presentation in the liver. Curr Opin Immunol 2016; 40: 36-42
  • 62 Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13 (03) 277-292
  • 63 Adams DH, Sanchez-Fueyo A, Samuel D. From immunosuppression to tolerance. J Hepatol 2015; 62 (1, Suppl) S170-S185
  • 64 Crispe IN. Immune tolerance in liver disease. Hepatology 2014; 60 (06) 2109-2117
  • 65 Bertolino P, Bowen DG, McCaughan GW, Fazekas de St Groth B. Antigen-specific primary activation of CD8+ T cells within the liver. J Immunol 2001; 166 (09) 5430-5438
  • 66 Wuensch SA, Pierce RH, Crispe IN. Local intrahepatic CD8+ T cell activation by a non-self-antigen results in full functional differentiation. J Immunol 2006; 177 (03) 1689-1697
  • 67 Klein I, Crispe IN. Complete differentiation of CD8+ T cells activated locally within the transplanted liver. J Exp Med 2006; 203 (02) 437-447
  • 68 Tay SS, Wong YC, Roediger B. , et al. Intrahepatic activation of naive CD4+ T cells by liver-resident phagocytic cells. J Immunol 2014; 193 (05) 2087-2095
  • 69 Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest 2004; 114 (05) 701-712
  • 70 Warren A, Le Couteur DG, Fraser R, Bowen DG, McCaughan GW, Bertolino P. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 2006; 44 (05) 1182-1190
  • 71 Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 1970; 31 (01) 125-150
  • 72 Wisse E. An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells. J Ultrastruct Res 1972; 38 (05) 528-562
  • 73 Herkel J, Jagemann B, Wiegard C. , et al. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocytes. Hepatology 2003; 37 (05) 1079-1085
  • 74 Arnold B. Parenchymal cells in immune and tolerance induction. Immunol Lett 2003; 89 (2-3): 225-228
  • 75 Holz LE, Benseler V, Bowen DG. , et al. Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology 2008; 135 (03) 989-997
  • 76 Kamada N, Teramoto K, Baguerizo A, Ishikawa M, Sumimoto R, Ohkouchi Y. Cellular basis of transplantation tolerance induced by liver grafting in the rat. Extent of clonal deletion among thoracic duct lymphocytes, spleen, and lymph node cells. Transplantation 1988; 46 (01) 165-167
  • 77 Lee YC, Lu L, Fu F. , et al. Hepatocytes and liver nonparenchymal cells induce apoptosis in activated T cells. Transplant Proc 1999; 31 (1-2): 784
  • 78 Kamada N, Shinomiya T. Clonal deletion as the mechanism of abrogation of immunological memory following liver grafting in rats. Immunology 1985; 55 (01) 85-90
  • 79 Qian S, Lu L, Fu F. , et al. Apoptosis within spontaneously accepted mouse liver allografts: evidence for deletion of cytotoxic T cells and implications for tolerance induction. J Immunol 1997; 158 (10) 4654-4661
  • 80 Le Moine O, Marchant A, Durand F. , et al. Systemic release of interleukin-10 during orthotopic liver transplantation. Hepatology 1994; 20 (4 Pt 1): 889-892
  • 81 Chen Y, Liu Z, Liang S. , et al. Role of Kupffer cells in the induction of tolerance of orthotopic liver transplantation in rats. Liver Transpl 2008; 14 (06) 823-836
  • 82 Buelens C, Verhasselt V, De Groote D, Thielemans K, Goldman M, Willems F. Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by interleukin-10. Eur J Immunol 1997; 27 (08) 1848-1852
  • 83 Knolle PA, Schmitt E, Jin S. , et al. Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology 1999; 116 (06) 1428-1440
  • 84 Benten D, Kumaran V, Joseph B. , et al. Hepatocyte transplantation activates hepatic stellate cells with beneficial modulation of cell engraftment in the rat. Hepatology 2005; 42 (05) 1072-1081
  • 85 Jiang G, Yang H-R, Wang L. , et al. Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner. Transplantation 2008; 86 (11) 1492-1502
  • 86 Gershon RK, Cohen P, Hencin R, Liebhaber SA. Suppressor T cells. J Immunol 1972; 108 (03) 586-590
  • 87 Hall BM, Pearce NW, Gurley KE, Dorsch SE. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J Exp Med 1990; 171 (01) 141-157
  • 88 Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155 (03) 1151-1164
  • 89 Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. Nat Rev Immunol 2012; 12 (06) 417-430
  • 90 Tang Q, Bluestone JA. Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb Perspect Med 2013; 3 (11) a015552-a015552
  • 91 Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008; 8 (07) 523-532
  • 92 Bluestone JA, Tang Q. Therapeutic vaccination using CD4 + CD25+ antigen-specific regulatory T cells. Proc Natl Acad Sci 2004; 101 (Suppl. 02) 14622-14626
  • 93 Long E, Wood KJ. Regulatory T cells in transplantation: transferring mouse studies to the clinic. Transplantation 2009; 88 (09) 1050-1056
  • 94 Kang SM, Tang Q, Bluestone JA. CD4+CD25+ regulatory T cells in transplantation: progress, challenges and prospects. Am J Transplant 2007; 7 (06) 1457-1463
  • 95 Joffre O, Santolaria T, Calise D. , et al. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat Med 2008; 14 (01) 88-92
  • 96 Li J, Lai X, Liao W, He Y, Liu Y, Gong J. The dynamic changes of Th17/Treg cytokines in rat liver transplant rejection and tolerance. Int Immunopharmacol 2011; 11 (08) 962-967
  • 97 Fujiki M, Esquivel CO, Martinez OM, Strober S, Uemoto S, Krams SM. Induced tolerance to rat liver allografts involves the apoptosis of intragraft T cells and the generation of CD4(+)CD25(+)FoxP3(+) T regulatory cells. Liver Transpl 2010; 16 (02) 147-154
  • 98 Li W, Zheng XX, Kuhr CS, Perkins JD. CTLA4 engagement is required for induction of murine liver transplant spontaneous tolerance. Am J Transplant 2005; 5 (05) 978-986
  • 99 Li W, Kuhr CS, Zheng XX. , et al. New insights into mechanisms of spontaneous liver transplant tolerance: the role of Foxp3-expressing CD25+CD4+ regulatory T cells. Am J Transplant 2008; 8 (08) 1639-1651
  • 100 Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3 (03) 199-210
  • 101 Issa F, Hester J, Goto R, Nadig SN, Goodacre TE, Wood K. Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation 2010; 90 (12) 1321-1327
  • 102 Snell GD. The homograft reaction. Annu Rev Microbiol 1957; 11 (01) 439-458
  • 103 Elkins WL, Guttmann RD. Pathogenesis of a local graft versus host reaction: immunogenicity of circulating host leukocytes. Science 1968; 159 (3820): 1250-1251
  • 104 Steinmuller D. Passenger leukocytes and the immunogenicity of skin allografts. J Invest Dermatol 1980; 75 (01) 107-115
  • 105 Barker CF, Billingham RE. Immunologically competent passenger cells in mouse skin. Transplantation 1972; 14 (04) 525-527
  • 106 Lakkis FG, Arakelov A, Konieczny BT, Inoue Y. Immunologic ‘ignorance’ of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat Med 2000; 6 (06) 686-688
  • 107 Larsen CP, Morris PJ, Austyn JM. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med 1990; 171 (01) 307-314
  • 108 Sun J, McCaughan GW, Gallagher ND, Sheil AG, Bishop GA. Deletion of spontaneous rat liver allograft acceptance by donor irradiation. Transplantation 1995; 60 (03) 233-236
  • 109 Tu Y, Arima T, Flye MW. Rejection of spontaneously accepted rat liver allografts with recipient interleukin-2 treatment or donor irradiation. Transplantation 1997; 63 (02) 177-181
  • 110 Sriwatanawongsa V, Davies HS, Calne RY. The essential roles of parenchymal tissues and passenger leukocytes in the tolerance induced by liver grafting in rats. Nat Med 1995; 1 (05) 428-432
  • 111 Taniguchi H, Toyoshima T, Fukao K, Nakauchi H. Presence of hematopoietic stem cells in the adult liver. Nat Med 1996; 2 (02) 198-203
  • 112 Halder RC, Seki S, Weerasinghe A, Kawamura T, Watanabe H, Abo T. Characterization of NK cells and extrathymic T cells generated in the liver of irradiated mice with a liver shield. Clin Exp Immunol 1998; 114 (03) 434-447
  • 113 Starzl TE, Demetris AJ, Trucco M. , et al. Systemic chimerism in human female recipients of male livers. Lancet 1992; 340 (8824): 876-877
  • 114 Starzl TE, Zinkernagel RM. Transplantation tolerance from a historical perspective. Nat Rev Immunol 2001; 1 (03) 233-239
  • 115 Sachs DH, Kawai T, Sykes M. Induction of tolerance through mixed chimerism. Cold Spring Harb Perspect Med 2014; 4 (01) a015529
  • 116 Strober S. Use of hematopoietic cell transplants to achieve tolerance in patients with solid organ transplants. Blood 2016; 127 (12) 1539-1543
  • 117 Wood K, Sachs DH. Chimerism and transplantation tolerance: cause and effect. Immunol Today 1996; 17 (12) 584-587 , discussion 588
  • 118 Nierhoff D, Horvath HC, Mytilineos J. , et al. Microchimerism in bone marrow-derived CD34(+) cells of patients after liver transplantation. Blood 2000; 96 (02) 763-767
  • 119 Hisanaga M, Hundrieser J, Böker K. , et al. Development, stability, and clinical correlations of allogeneic microchimerism after solid organ transplantation. Transplantation 1996; 61 (01) 40-45
  • 120 Alexander SI, Smith N, Hu M. , et al. Chimerism and tolerance in a recipient of a deceased-donor liver transplant. N Engl J Med 2008; 358 (04) 369-374
  • 121 Zuber J, Rosen S, Shonts B. , et al. Macrochimerism in intestinal transplantation: Association with lower rejection rates and multivisceral transplants, without GVHD. Am J Transplant 2015; 15 (10) 2691-2703
  • 122 Marino J, Babiker-Mohamed MH, Crosby-Bertorini P. , et al. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol 2016; 1 (01) aaf8759
  • 123 Liu Q, Rojas-Canales DM, Divito SJ. , et al. Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest 2016; 126 (08) 2805-2820
  • 124 Lemoinne S, Thabut D, Housset C. , et al. The emerging roles of microvesicles in liver diseases. Nat Rev Gastroenterol Hepatol 2014; 11 (06) 350-361
  • 125 Sato K, Meng F, Glaser S, Alpini G. Exosomes in liver pathology. J Hepatol 2016; 65 (01) 213-221
  • 126 Sun J, Sheil AGR, Wang C. , et al. Tolerance to rat liver allografts: IV. Acceptance depends on the quantity of donor tissue and on donor leukocytes. Transplantation 1996; 62 (12) 1725-1730
  • 127 Wang C, Sheil AG, Sun J. Outcome of different models of multiorgan transplantation in rats. Microsurgery 1999; 19 (07) 318-323
  • 128 He C, Schenk S, Zhang Q. , et al. Effects of T cell frequency and graft size on transplant outcome in mice. J Immunol 2004; 172 (01) 240-247
  • 129 Margreiter R, Kornberger R, Koller J. , et al. Can a liver graft from the same donor protect a kidney from rejection? Transplant Proc 1988; 20 (Suppl 1): 522-523
  • 130 Gonwa TA, Nery JR, Husberg BS, Klintmalm GB. Simultaneous liver and renal transplantation in man. Transplantation 1988; 46 (05) 690-693
  • 131 Rana A, Robles S, Russo MJ. , et al. The combined organ effect: protection against rejection?. Ann Surg 2008; 248 (05) 871-879
  • 132 Taner T, Heimbach JK, Rosen CB, Nyberg SL, Park WD, Stegall MD. Decreased chronic cellular and antibody-mediated injury in the kidney following simultaneous liver-kidney transplantation. Kidney Int 2016; 89 (04) 909-917
  • 133 Wong TW, Gandhi MJ, Daly RC. , et al. Liver allograft provides immunoprotection for the cardiac allograft in combined heart-liver transplantation. Am J Transplant 2016; 16 (12) 3522-3531
  • 134 Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 2015; 15 (08) 486-499
  • 135 Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 2012; 37 (06) 1130-1144
  • 136 Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol 2014; 35 (02) 51-60
  • 137 Zajac AJ, Blattman JN, Murali-Krishna K. , et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 1998; 188 (12) 2205-2213
  • 138 Owusu Sekyere S, Suneetha PV, Kraft ARM. , et al. A heterogeneous hierarchy of co-regulatory receptors regulates exhaustion of HCV-specific CD8 T cells in patients with chronic hepatitis C. J Hepatol 2015; 62 (01) 31-40
  • 139 Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol 2004; 78 (11) 5535-5545
  • 140 Shin H, Blackburn SD, Blattman JN, Wherry EJ. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J Exp Med 2007; 204 (04) 941-949
  • 141 Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 2015; 36 (04) 265-276
  • 142 Trzonkowski P, Debska-Slizień A, Jankowska M. , et al. Immunosenescence increases the rate of acceptance of kidney allotransplants in elderly recipients through exhaustion of CD4+ T-cells. Mech Ageing Dev 2010; 131 (02) 96-104
  • 143 Ramaswami B, Yoshida O, Ippolito R. , et al. Pediatric liver transplant recipients with operational tolerance exhibit features of immune activation and exhaustion (TRAN3P.869). J Immunol 2014; 192 (Suppl 1): 202-208
  • 144 Bohne F, Londoño M-C, Benítez C. , et al. HCV-induced immune responses influence the development of operational tolerance after liver transplantation in humans. Sci Transl Med 2014; 6 (242) 242ra81
  • 145 Pons JA, Yélamos J, Ramírez P. , et al. Endothelial cell chimerism does not influence allograft tolerance in liver transplant patients after withdrawal of immunosuppression. Transplantation 2003; 75 (07) 1045-1047
  • 146 Feng S, Ekong UD, Lobritto SJ. , et al. Complete immunosuppression withdrawal and subsequent allograft function among pediatric recipients of parental living donor liver transplants. JAMA 2012; 307 (03) 283-293
  • 147 Benítez C, Londoño M-C, Miquel R. , et al. Prospective multicenter clinical trial of immunosuppressive drug withdrawal in stable adult liver transplant recipients. Hepatology 2013; 58 (05) 1824-1835
  • 148 de la Garza RG, Sarobe P, Merino J. , et al. Trial of complete weaning from immunosuppression for liver transplant recipients: factors predictive of tolerance. Liver Transpl 2013; 19 (09) 937-944
  • 149 Li Y, Koshiba T, Yoshizawa A. , et al. Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. Am J Transplant 2004; 4 (12) 2118-2125
  • 150 Martínez-Llordella M, Puig-Pey I, Orlando G. , et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am J Transplant 2007; 7 (02) 309-319
  • 151 Puig-Pey I, Bohne F, Benítez C. , et al. Characterization of γδ T cell subsets in organ transplantation. Transpl Int 2010; 23 (10) 1045-1055
  • 152 Jiang S, Lechler RI. Regulatory T cells in the control of transplantation tolerance and autoimmunity. Am J Transplant 2003; 3 (05) 516-524
  • 153 Mazariegos GV, Zahorchak AF, Reyes J, Chapman H, Zeevi A, Thomson AW. Dendritic cell subset ratio in tolerant, weaning and non-tolerant liver recipients is not affected by extent of immunosuppression. Am J Transplant 2005; 5 (02) 314-322
  • 154 Zhao X, Li Y, Ohe H. , et al. Intragraft Vδ1 γδ T cells with a unique T-cell receptor are closely associated with pediatric semiallogeneic liver transplant tolerance. Transplantation 2013; 95 (01) 192-202
  • 155 Martínez-Llordella M, Lozano J-J, Puig-Pey I. , et al. Using transcriptional profiling to develop a diagnostic test of operational tolerance in liver transplant recipients. J Clin Invest 2008; 118 (08) 2845-2857
  • 156 Bohne F, Martínez-Llordella M, Lozano J-J. , et al. Intra-graft expression of genes involved in iron homeostasis predicts the development of operational tolerance in human liver transplantation. J Clin Invest 2012; 122 (01) 368-382
  • 157 Bonaccorsi-Riani E, Danger R, Lozano J-J. , et al. Iron deficiency impairs intra-hepatic lymphocyte mediated immune response. PLoS One 2015; 10 (08) e0136106
  • 158 Morris H, DeWolf S, Robins H. , et al. Tracking donor-reactive T cells: evidence for clonal deletion in tolerant kidney transplant patients. Sci Transl Med 2015; 7 (272) 272ra10
  • 159 Calne R, Friend P, Moffatt S. , et al. Prope tolerance, perioperative campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet 1998; 351 (9117): 1701-1702
  • 160 Starzl TE, Murase N, Abu-Elmagd K. , et al. Tolerogenic immunosuppression for organ transplantation. Lancet 2003; 361 (9368): 1502-1510
  • 161 Marcos A, Eghtesad B, Fung JJ. , et al. Use of alemtuzumab and tacrolimus monotherapy for cadaveric liver transplantation: with particular reference to hepatitis C virus. Transplantation 2004; 78 (07) 966-971
  • 162 Donckier V, Craciun L, Miqueu P. , et al. Expansion of memory-type CD8+ T cells correlates with the failure of early immunosuppression withdrawal after cadaver liver transplantation using high-dose ATG induction and rapamycin. Transplantation 2013; 96 (03) 306-315
  • 163 Kirk AD, Hale DA, Mannon RB. , et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 2003; 76 (01) 120-129
  • 164 Scandling JD, Busque S, Shizuru JA. , et al. Chimerism, graft survival, and withdrawal of immunosuppressive drugs in HLA matched and mismatched patients after living donor kidney and hematopoietic cell transplantation. Am J Transplant 2015; 15 (03) 695-704
  • 165 Leventhal JR, Mathew JM, Salomon DR. , et al. Nonchimeric HLA-identical renal transplant tolerance: regulatory immunophenotypic/genomic biomarkers. Am J Transplant 2016; 16 (01) 221-234
  • 166 Kawai T, Sachs DH, Sprangers B. , et al. Long-term results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am J Transplant 2014; 14 (07) 1599-1611
  • 167 Donckier V, Troisi R, Le Moine A. , et al. Early immunosuppression withdrawal after living donor liver transplantation and donor stem cell infusion. Liver Transpl 2006; 12 (10) 1523-1528
  • 168 Donckier V, Troisi R, Toungouz M. , et al. Donor stem cell infusion after non-myeloablative conditioning for tolerance induction to HLA mismatched adult living-donor liver graft. Transpl Immunol 2004; 13 (02) 139-146
  • 169 Masteller EL, Warner MR, Tang Q, Tarbell KV, McDevitt H, Bluestone JA. Expansion of functional endogenous antigen-specific CD4+CD25+ regulatory T cells from nonobese diabetic mice. J Immunol 2005; 175 (05) 3053-3059
  • 170 Trenado A, Sudres M, Tang Q. , et al. Ex vivo-expanded CD4+CD25+ immunoregulatory T cells prevent graft-versus-host-disease by inhibiting activation/differentiation of pathogenic T cells. J Immunol 2006; 176 (02) 1266-1273
  • 171 Brennan TV, Tang Q, Liu F-C. , et al. Requirements for prolongation of allograft survival with regulatory T cell infusion in lymphosufficient hosts. J Surg Res 2011; 169 (01) e69-e75
  • 172 Nagahama K, Nishimura E, Sakaguchi S. Induction of tolerance by adoptive transfer of Treg cells. Methods Mol Biol 2007; 380: 431-442
  • 173 Pu L-Y, Wang X-H, Zhang F. , et al. Adoptive transfusion of ex vivo donor alloantigen-stimulated CD4(+)CD25(+) regulatory T cells ameliorates rejection of DA-to-Lewis rat liver transplantation. Surgery 2007; 142 (01) 67-73
  • 174 Trzonkowski P, Bieniaszewska M, Juścińska J. , et al. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+CD25+CD127- T regulatory cells. Clin Immunol 2009; 133 (01) 22-26
  • 175 Di Ianni M, Falzetti F, Carotti A. , et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 2011; 117 (14) 3921-3928
  • 176 Brunstein CG, Miller JS, Cao Q. , et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 2011; 117 (03) 1061-1070
  • 177 Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A. , et al. Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children. Diabetes Care 2012; 35 (09) 1817-1820
  • 178 Todo S, Yamashita K, Goto R. , et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology 2016; 64 (02) 632-643
  • 179 Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006; 311 (5769): 1924-1927
  • 180 Webster KE, Walters S, Kohler RE. , et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med 2009; 206 (04) 751-760
  • 181 Dinh TN, Kyaw TS, Kanellakis P. , et al. Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation 2012; 126 (10) 1256-1266
  • 182 Wilson MS, Pesce JT, Ramalingam TR, Thompson RW, Cheever A, Wynn TA. Suppression of murine allergic airway disease by IL-2:anti-IL-2 monoclonal antibody-induced regulatory T cells. J Immunol 2008; 181 (10) 6942-6954