Subscribe to RSS
DOI: 10.1055/s-0037-1603324
Epigenetics in the Primary Biliary Cholangitis and Primary Sclerosing Cholangitis
Publication History
Publication Date:
31 May 2017 (online)
Abstract
Epigenomics, the study of modifications to genetic material that do not alter the underlying DNA sequence, is generating increasing interest as a means to help clarify disease pathogenesis and outcomes. Although genome-wide association studies have identified several potential candidate genes that may be implicated in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), it is estimated that these genes explain less than 20% of the heritability of these diseases. Thus, to date, the origins of “missing heritability” for PBC and PSC remain elusive. The epigenome may provide a potentially elegant solution to this phenomenon, as it can be modified by both internal and external exposures (coined the “exposome”). This may explain differences in disease presentation, treatment response, and rates of progression between individuals. Epigenetic changes may also provide a framework for discovering potential biomarkers for diagnosis and screening of PBC and PSC. Importantly, because the epigenome is modifiable, it may also highlight novel pathways for therapeutic discovery and interventions of these diseases.
Keywords
cholestatic liver disease - epigenetics - primary biliary cholangitis - primary sclerosing cholangitisKey Points
• The epigenome is comprised of heritable changes occurring upon the genome that lead to phenotypic changes without altering the underlying DNA sequence.
• The epigenome may provide an explanation for the disconnect between the low risk associated with the large number of susceptibility loci identified by GWAS and the much higher magnitude of calculated attributable heritability.
• The epigenome, being modifiable, may be altered by numerous external and internal factors (the totality of which is included in the term “exposome”), thus presenting a vast new area of inquiry into the cause of disease in susceptible individuals.
• In PBC, both animal models and human studies have suggested an association between environmental exposure and disease, as well as epigenetic modifications and disease pathogenesis.
• Despite associations between exposures and the risk of PSC, there have been no studies evaluating potential epigenetic changes that may be involved, thus this is an area that may expand our understanding of the pathogenesis of PSC, thereby opening doors to new treatment modalities.
-
References
- 1 Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev 2009; 23 (07) 781-783
- 2 Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358 (11) 1148-1159
- 3 Ozanne SE. Epigenetic signatures of obesity. N Engl J Med 2015; 372 (10) 973-974
- 4 Zhang Z, Zhang R. Epigenetics in autoimmune diseases: pathogenesis and prospects for therapy. Autoimmun Rev 2015; 14 (10) 854-863
- 5 Koch L. Epigenetics: an epigenetic twist on the missing heritability of complex traits. Nat Rev Genet 2014; 15 (04) 218
- 6 Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med 2010; 363 (02) 166-176
- 7 Tough DF, Prinjha RK. Immune disease-associated variants in gene enhancers point to BET epigenetic mechanisms for therapeutic intervention. Epigenomics 2016
- 8 Rappaport SM. Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol 2011; 21 (01) 5-9
- 9 Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr 2009; 21 (02) 243-251
- 10 Gudsnuk K, Champagne FA. Epigenetic influence of stress and the social environment. ILAR J 2012; 53 (3-4): 279-288
- 11 Skinner MK. Environmental epigenomics and disease susceptibility. EMBO Rep 2011; 12 (07) 620-622
- 12 Eisenstein M. Epitranscriptomics: mixed messages. Nat Methods 2017; 14: 15-17
- 13 Schübeler D. Function and information content of DNA methylation. Nature 2015; 517 (7534): 321-326
- 14 Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13 (07) 484-492
- 15 Illingworth RS, Bird AP. CpG islands--‘a rough guide’. FEBS Lett 2009; 583 (11) 1713-1720
- 16 Rivera CM, Ren B. Mapping human epigenomes. Cell 2013; 155 (01) 39-55
- 17 Reik W, Lewis A. Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 2005; 6 (05) 403-410
- 18 Maunakea AK, Nagarajan RP, Bilenky M. , et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010; 466 (7303): 253-257
- 19 Gaszner M, Felsenfeld G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 2006; 7 (09) 703-713
- 20 Jackson-Grusby L, Beard C, Possemato R. , et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet 2001; 27 (01) 31-39
- 21 Chen T, Hevi S, Gay F. , et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 2007; 39 (03) 391-396
- 22 Du Q, Luu PL, Stirzaker C, Clark SJ. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 2015; 7 (06) 1051-1073
- 23 Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6 (08) 597-610
- 24 Trerotola M, Relli V, Simeone P, Alberti S. Epigenetic inheritance and the missing heritability. Hum Genomics 2015; 9: 17
- 25 Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 2013; 14 (06) 341-356
- 26 Venkatesh S, Workman JL. Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 2015; 16 (03) 178-189
- 27 Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13 (05) 343-357
- 28 Turner BM. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol 2005; 12 (02) 110-112
- 29 Simon JA, Kingston RE. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 2013; 49 (05) 808-824
- 30 Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 2015; 16 (02) 71-84
- 31 Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014; 157 (01) 77-94
- 32 Park JH, Wacholder S, Gail MH. , et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 2010; 42 (07) 570-575
- 33 Liu JZ, Anderson CA. Genetic studies of Crohn's disease: past, present and future. Best Pract Res Clin Gastroenterol 2014; 28 (03) 373-386
- 34 Willett WC. Balancing life-style and genomics research for disease prevention. Science 2002; 296 (5568): 695-698
- 35 Hirschfield GM, Chapman RW, Karlsen TH, Lammert F, Lazaridis KN, Mason AL. The genetics of complex cholestatic disorders. Gastroenterology 2013; 144 (07) 1357-1374
- 36 Lichtenstein P, Holm NV, Verkasalo PK. , et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000; 343 (02) 78-85
- 37 Manolio TA, Collins FS, Cox NJ. , et al. Finding the missing heritability of complex diseases. Nature 2009; 461 (7265): 747-753
- 38 McCarthy MI, Hirschhorn JN. Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet 2008; 17 (R2): R156-R165
- 39 Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 2010; 6 (04) e1000888
- 40 Farh KK, Marson A, Zhu J. , et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015; 518 (7539): 337-343
- 41 Wilhelm M, Schlegl J, Hahne H. , et al. Mass-spectrometry-based draft of the human proteome. Nature 2014; 509 (7502): 582-587
- 42 Coppola CJ, C. Ramaker R, Mendenhall EM. Identification and function of enhancers in the human genome. Hum Mol Genet 2016; 25 (R2): R190-R197
- 43 Ong CT, Corces VG. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 2011; 12 (04) 283-293
- 44 Onengut-Gumuscu S, Chen WM, Burren O. , et al; Type 1 Diabetes Genetics Consortium. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 2015; 47 (04) 381-386
- 45 Fu W, Farache J, Clardy SM. , et al. Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells. eLife 2014; 3: e04631
- 46 Skinner MK. Endocrine disruptors in 2015: Epigenetic transgenerational inheritance. Nat Rev Endocrinol 2016; 12 (02) 68-70
- 47 Szyf M. Nongenetic inheritance and transgenerational epigenetics. Trends Mol Med 2015; 21 (02) 134-144
- 48 Borgel J, Guibert S, Li Y. , et al. Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 2010; 42 (12) 1093-1100
- 49 Fulka H, Mrazek M, Tepla O, Fulka Jr J. DNA methylation pattern in human zygotes and developing embryos. Reproduction 2004; 128 (06) 703-708
- 50 Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308 (5727): 1466-1469
- 51 Schuster A, Skinner MK, Yan W. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environ Epigenet 2016; 2: 1-10
- 52 Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 2006; 441 (7092): 469-474
- 53 Mells GF, Kaser A, Karlsen TH. Novel insights into autoimmune liver diseases provided by genome-wide association studies. J Autoimmun 2013; 46: 41-54
- 54 Ellinghaus D, Jostins L, Spain SL. , et al; International IBD Genetics Consortium (IIBDGC); International Genetics of Ankylosing Spondylitis Consortium (IGAS); International PSC Study Group (IPSCSG); Genetic Analysis of Psoriasis Consortium (GAPC); Psoriasis Association Genetics Extension (PAGE). Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016; 48 (05) 510-518
- 55 Sivakumaran S, Agakov F, Theodoratou E. , et al. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet 2011; 89 (05) 607-618
- 56 Hullar MA, Fu BC. Diet, the gut microbiome, and epigenetics. Cancer J 2014; 20 (03) 170-175
- 57 Paschos K, Allday MJ. Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 2010; 18 (10) 439-447
- 58 Al Akeel R. Role of epigenetic reprogramming of host genes in bacterial pathogenesis. Saudi J Biol Sci 2013; 20 (04) 305-309
- 59 Howel D, Fischbacher CM, Bhopal RS, Gray J, Metcalf JV, James OF. An exploratory population-based case-control study of primary biliary cirrhosis. Hepatology 2000; 31 (05) 1055-1060
- 60 Parikh-Patel A, Gold EB, Worman H, Krivy KE, Gershwin ME. Risk factors for primary biliary cirrhosis in a cohort of patients from the united states. Hepatology 2001; 33 (01) 16-21
- 61 Gershwin ME, Selmi C, Worman HJ. , et al; USA PBC Epidemiology Group. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology 2005; 42 (05) 1194-1202
- 62 Corpechot C, Chrétien Y, Chazouillères O, Poupon R. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol 2010; 53 (01) 162-169
- 63 Eaton JE, Juran BD, Atkinson EJ. , et al. A comprehensive assessment of environmental exposures among 1000 North American patients with primary sclerosing cholangitis, with and without inflammatory bowel disease. Aliment Pharmacol Ther 2015; 41 (10) 980-990
- 64 Loftus Jr EV, Sandborn WJ, Tremaine WJ. , et al. Primary sclerosing cholangitis is associated with nonsmoking: a case-control study. Gastroenterology 1996; 110 (05) 1496-1502
- 65 van Erpecum KJ, Smits SJ, van de Meeberg PC. , et al. Risk of primary sclerosing cholangitis is associated with nonsmoking behavior. Gastroenterology 1996; 110 (05) 1503-1506
- 66 Mitchell SA, Thyssen M, Orchard TR, Jewell DP, Fleming KA, Chapman RW. Cigarette smoking, appendectomy, and tonsillectomy as risk factors for the development of primary sclerosing cholangitis: a case control study. Gut 2002; 51 (04) 567-573
- 67 Andersen IM, Tengesdal G, Lie BA, Boberg KM, Karlsen TH, Hov JR. Effects of coffee consumption, smoking, and hormones on risk for primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2014; 12 (06) 1019-1028
- 68 Lammert C, Juran BD, Schlicht E. , et al. Reduced coffee consumption among individuals with primary sclerosing cholangitis but not primary biliary cirrhosis. Clin Gastroenterol Hepatol 2014; 12 (09) 1562-1568
- 69 Prince MI, Ducker SJ, James OF. Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations. Gut 2010; 59 (04) 508-512
- 70 Lammert C, Nguyen DL, Juran BD. , et al. Questionnaire based assessment of risk factors for primary biliary cirrhosis. Dig Liver Dis 2013; 45 (07) 589-594
- 71 Long SA, Quan C, Van de Water J. , et al. Immunoreactivity of organic mimeotopes of the E2 component of pyruvate dehydrogenase: connecting xenobiotics with primary biliary cirrhosis. J Immunol 2001; 167 (05) 2956-2963
- 72 Leung PS, Quan C, Park O. , et al. Immunization with a xenobiotic 6-bromohexanoate bovine serum albumin conjugate induces antimitochondrial antibodies. J Immunol 2003; 170 (10) 5326-5332
- 73 Wakabayashi K, Lian ZX, Leung PS. , et al. Loss of tolerance in C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehydrogenase by a xenobiotic with ensuing biliary ductular disease. Hepatology 2008; 48 (02) 531-540
- 74 Wakabayashi K, Yoshida K, Leung PS. , et al. Induction of autoimmune cholangitis in non-obese diabetic (NOD).1101 mice following a chemical xenobiotic immunization. Clin Exp Immunol 2009; 155 (03) 577-586
- 75 Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 2014; 11 (01) 55-67
- 76 Kim YC, Fang S, Byun S, Seok S, Kemper B, Kemper JK. Farnesoid X receptor-induced lysine-specific histone demethylase reduces hepatic bile acid levels and protects the liver against bile acid toxicity. Hepatology 2015; 62 (01) 220-231
- 77 Nguyen DL, Juran BD, Lazaridis KN. Primary biliary cirrhosis. Best Pract Res Clin Gastroenterol 2010; 24 (05) 647-654
- 78 Walker JG, Doniach D, Roitt IM, Sherlock S. Serological tests in diagnosis of primary biliary cirrhosis. Lancet 1965; 1 (7390): 827-831
- 79 Lindor KD, Gershwin ME, Poupon R, Kaplan M, Bergasa NV, Heathcote EJ. ; American Association for Study of Liver Diseases. Primary biliary cirrhosis. Hepatology 2009; 50 (01) 291-308
- 80 Nevens F, Andreone P, Mazzella G. , et al; POISE Study Group. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375 (07) 631-643
- 81 Parés A. Therapy of primary biliary cirrhosis: novel approaches for patients with suboptimal response to ursodeoxycholic acid. Dig Dis 2015; 33 (Suppl. 02) 125-133
- 82 Selmi C, Mayo MJ, Bach N. , et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 2004; 127 (02) 485-492
- 83 Selmi C, Cavaciocchi F, Lleo A. , et al. Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis. Front Immunol 2014; 5: 128
- 84 Euskirchen GM, Auerbach RK, Davidov E. , et al. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet 2011; 7 (03) e1002008
- 85 Lleo A, Liao J, Invernizzi P. , et al. Immunoglobulin M levels inversely correlate with CD40 ligand promoter methylation in patients with primary biliary cirrhosis. Hepatology 2012; 55 (01) 153-160
- 86 Notarangelo LD, Hayward AR. X-linked immunodeficiency with hyper-IgM (XHIM). Clin Exp Immunol 2000; 120 (03) 399-405
- 87 Hu Z, Huang Y, Liu Y. , et al. β-Arrestin 1 modulates functions of autoimmune T cells from primary biliary cirrhosis patients. J Clin Immunol 2011; 31 (03) 346-355
- 88 Wang J, Lo JC, Foster A. , et al. The regulation of T cell homeostasis and autoimmunity by T cell-derived LIGHT. J Clin Invest 2001; 108 (12) 1771-1780
- 89 Harada K, Shimoda S, Sato Y, Isse K, Ikeda H, Nakanuma Y. Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol 2009; 157 (02) 261-270
- 90 Rong G, Zhou Y, Xiong Y. , et al. Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol 2009; 156 (02) 217-225
- 91 Yang CY, Ma X, Tsuneyama K. , et al. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology 2014; 59 (05) 1944-1953
- 92 Bae HR, Leung PS, Tsuneyama K. , et al. Chronic expression of interferon-gamma leads to murine autoimmune cholangitis with a female predominance. Hepatology 2016; 64 (04) 1189-1201
- 93 Syu BJ, Loh CE, Hsueh YH, Gershwin ME, Chuang YH. Dual roles of IFN-γ and IL-4 in the natural history of murine autoimmune cholangitis: IL-30 and implications for precision medicine. Sci Rep 2016; 6: 34884
- 94 Mackay F, Kalled SL. TNF ligands and receptors in autoimmunity: an update. Curr Opin Immunol 2002; 14 (06) 783-790
- 95 Falschlehner C, Schaefer U, Walczak H. Following TRAIL's path in the immune system. Immunology 2009; 127 (02) 145-154
- 96 Lleo A, Selmi C, Invernizzi P. , et al. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology 2009; 49 (03) 871-879
- 97 Pelli N, Floreani A, Torre F. , et al. Soluble apoptosis molecules in primary biliary cirrhosis: analysis and commitment of the Fas and tumour necrosis factor-related apoptosis-inducing ligand systems in comparison with chronic hepatitis C. Clin Exp Immunol 2007; 148 (01) 85-89
- 98 Liang Y, Yang Z, Li C, Zhu Y, Zhang L, Zhong R. Characterisation of TNF-related apoptosis-inducing ligand in peripheral blood in patients with primary biliary cirrhosis. Clin Exp Med 2008; 8 (01) 1-7
- 99 Mitchell MM, Lleo A, Zammataro L. , et al. Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis. Epigenetics 2011; 6 (01) 95-102
- 100 Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 2005; 434 (7031): 400-404
- 101 Miozzo M, Selmi C, Gentilin B. , et al. Preferential X chromosome loss but random inactivation characterize primary biliary cirrhosis. Hepatology 2007; 46 (02) 456-462
- 102 Lleo A, Oertelt-Prigione S, Bianchi I. , et al. Y chromosome loss in male patients with primary biliary cirrhosis. J Autoimmun 2013; 41: 87-91
- 103 Lleo A, Zhang W, Zhao M. , et al; PBC Epigenetic Study Group. DNA methylation profiling of the X chromosome reveals an aberrant demethylation on CXCR3 promoter in primary biliary cirrhosis. Clin Epigenetics 2015; 7: 61
- 104 Groom JR, Richmond J, Murooka TT. , et al. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 2012; 37 (06) 1091-1103
- 105 Groom JR, Luster AD. CXCR3 in T cell function. Exp Cell Res 2011; 317 (05) 620-631
- 106 Chapman R, Fevery J, Kalloo A. , et al; American Association for the Study of Liver Diseases. Diagnosis and management of primary sclerosing cholangitis. Hepatology 2010; 51 (02) 660-678
- 107 Boonstra K, Beuers U, Ponsioen CY. Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol 2012; 56 (05) 1181-1188
- 108 Wiesner RH, Grambsch PM, Dickson ER. , et al. Primary sclerosing cholangitis: natural history, prognostic factors and survival analysis. Hepatology 1989; 10 (04) 430-436
- 109 Ponsioen CY, Vrouenraets SM, Prawirodirdjo W. , et al. Natural history of primary sclerosing cholangitis and prognostic value of cholangiography in a Dutch population. Gut 2002; 51 (04) 562-566
- 110 Loftus Jr EV, Harewood GC, Loftus CG. , et al. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 2005; 54 (01) 91-96
- 111 European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol 2009; 51 (02) 237-267
- 112 Bergquist A, Ekbom A, Olsson R. , et al. Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol 2002; 36 (03) 321-327
- 113 Ali AH, Carey EJ, Lindor KD. The microbiome and primary sclerosing cholangitis. Semin Liver Dis 2016; 36 (04) 340-348
- 114 Ding SZ, Goldberg JB, Hatakeyama M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol 2010; 6 (05) 851-862
- 115 Fofanova TY, Petrosino JF, Kellermayer R. Microbiome-epigenome interactions and the environmental origins of inflammatory bowel diseases. J Pediatr Gastroenterol Nutr 2016; 62 (02) 208-219
- 116 Aune D, Chan DS, Lau R. , et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 2011; 343: d6617
- 117 Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol 2011; 106 (04) 563-573
- 118 Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 2012; 48 (04) 612-626
- 119 Mali P, Chou BK, Yen J. , et al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 2010; 28 (04) 713-720
- 120 Lawrance IC. Topical agents for idiopathic distal colitis and proctitis. J Gastroenterol Hepatol 2011; 26 (01) 36-43
- 121 O'Hagan HM, Wang W, Sen S. , et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 2011; 20 (05) 606-619
- 122 Paul DS, Teschendorff AE, Dang MA. , et al. Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat Commun 2016; 7: 13555
- 123 Mill J, Heijmans BT. From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet 2013; 14 (08) 585-594
- 124 Viera AJ. Predisease: when does it make sense?. Epidemiol Rev 2011; 33: 122-134
- 125 Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S. Use of epigenetic drugs in disease: an overview. Genet Epigenet 2014; 6: 9-19
- 126 Ahuja N, Sharma AR, Baylin SB. Epigenetic Therapeutics: A New Weapon in the War Against Cancer. Annu Rev Med 2016; 67: 73-89
- 127 Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R. FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 2005; 10 (03) 176-182
- 128 Mau T, Yung R. Potential of epigenetic therapies in non-cancerous conditions. Front Genet 2014; 5: 438
- 129 Imperiale TF, Ransohoff DF, Itzkowitz SH. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med 2014; 371 (02) 187-188
- 130 Mikeska T, Craig JM. DNA methylation biomarkers: cancer and beyond. Genes (Basel) 2014; 5 (03) 821-864
- 131 Olson P, Lu J, Zhang H. , et al. MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 2009; 23 (18) 2152-2165