Semin Liver Dis 2017; 37(03): 243-258
DOI: 10.1055/s-0037-1603651
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Quantitative Imaging in Diffuse Liver Diseases

Bernard E. Van Beers
1   Laboratory of Imaging Biomarkers, Inflammation Research Center, UMR 1149 INSERM - University Paris Diderot, Paris, France
2   Department of Radiology, DHU Unity, Beaujon University Hospital Paris Nord, Clichy, France
,
Philippe Garteiser
1   Laboratory of Imaging Biomarkers, Inflammation Research Center, UMR 1149 INSERM - University Paris Diderot, Paris, France
,
Benjamin Leporq
1   Laboratory of Imaging Biomarkers, Inflammation Research Center, UMR 1149 INSERM - University Paris Diderot, Paris, France
,
Pierre-Emmanuel Rautou
3   Inflammation Research Center, UMR 1149 INSERM - University Paris Diderot, Paris, France
4   Department of Hepatology, DHU Unity, Beaujon University Hospital Paris Nord, Clichy, France
,
Dominique Valla
3   Inflammation Research Center, UMR 1149 INSERM - University Paris Diderot, Paris, France
4   Department of Hepatology, DHU Unity, Beaujon University Hospital Paris Nord, Clichy, France
› Author Affiliations
Further Information

Publication History

Publication Date:
28 August 2017 (online)

Abstract

Cross-sectional imaging methods and more specifically ultrasonography and magnetic resonance imaging (MRI), have increasing roles in the quantitative evaluation of diffuse liver diseases. Particularly, ultrasound elastography is becoming the standard first-line examination for diagnosing severe liver fibrosis. Quantitative ultrasonography also brings information for staging portal hypertension in compensated cirrhosis and for grading liver steatosis. Quantitative MRI offers a multiparametric approach to assess the severity of liver steatosis, iron overload, fibrosis, inflammation, and portal hypertension. Regional liver transport function can be assessed with combined volumetric computed tomography and 99Tc mebrofenin single-photon emission computed tomography or with gadoxetic acid-enhanced MRI. It is concluded that multiparametric MRI complements the information brought with quantitative ultrasonography and has the potential to become a method of virtual liver biopsy that may decrease the need for invasive reference examinations in diffuse liver diseases.

 
  • References

  • 1 European Association for Study of Liver; Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 2015; 63 (01) 237-264
  • 2 Berzigotti A, Nicolau C, Bellot P. , et al. Evaluation of regional hepatic perfusion (RHP) by contrast-enhanced ultrasound in patients with cirrhosis. J Hepatol 2011; 55 (02) 307-314
  • 3 Kim MY, Suk KT, Baik SK. , et al. Hepatic vein arrival time as assessed by contrast-enhanced ultrasonography is useful for the assessment of portal hypertension in compensated cirrhosis. Hepatology 2012; 56 (03) 1053-1062
  • 4 Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2014; 61 (01) 102-119
  • 5 Ronot M, Asselah T, Paradis V. , et al. Liver fibrosis in chronic hepatitis C virus infection: differentiating minimal from intermediate fibrosis with perfusion CT. Radiology 2010; 256 (01) 135-142
  • 6 van Werven JR, Marsman HA, Nederveen AJ. , et al. Assessment of hepatic steatosis in patients undergoing liver resection: comparison of US, CT, T1-weighted dual-echo MR imaging, and point-resolved 1H MR spectroscopy. Radiology 2010; 256 (01) 159-168
  • 7 Van Beers BE, Daire JL, Garteiser P. New imaging techniques for liver diseases. J Hepatol 2015; 62 (03) 690-700
  • 8 Annet L, Materne R, Danse E, Jamart J, Horsmans Y, Van Beers BE. Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology 2003; 229 (02) 409-414
  • 9 Sourbron S, Sommer WH, Reiser MF, Zech CJ. Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology 2012; 263 (03) 874-883
  • 10 Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168 (02) 497-505
  • 11 Huwart L, Sempoux C, Vicaut E. , et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 2008; 135 (01) 32-40
  • 12 Bannas P, Kramer H, Hernando D. , et al. Quantitative magnetic resonance imaging of hepatic steatosis: Validation in ex vivo human livers. Hepatology 2015; 62 (05) 1444-1455
  • 13 Leporq B, Lambert SA, Ronot M, Vilgrain V, Van Beers BE. Quantification of the triglyceride fatty acid composition with 3.0 T MRI. NMR Biomed 2014; 27 (10) 1211-1221
  • 14 Heye T, Yang SR, Bock M. , et al. MR relaxometry of the liver: significant elevation of T1 relaxation time in patients with liver cirrhosis. Eur Radiol 2012; 22 (06) 1224-1232
  • 15 Balassy C, Feier D, Peck-Radosavljevic M. , et al. Susceptibility-weighted MR imaging in the grading of liver fibrosis: a feasibility study. Radiology 2014; 270 (01) 149-158
  • 16 Hoekstra LT, de Graaf W, Nibourg GA. , et al. Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg 2013; 257 (01) 27-36
  • 17 Ørntoft NW, Munk OL, Frisch K, Ott P, Keiding S, Sørensen M. Hepatobiliary transport kinetics of the conjugated bile acid tracer (11)C-CSar quantified in healthy humans and patients by positron emission tomography. J Hepatol 2017; S0168-8278 (17) 30120-30124
  • 18 Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol 2009; 51 (03) 433-445
  • 19 Machann J, Horstmann A, Born M, Hesse S, Hirsch FW. Diagnostic imaging in obesity. Best Pract Res Clin Endocrinol Metab 2013; 27 (02) 261-277
  • 20 Kinner S, Reeder SB, Yokoo T. Quantitative imaging biomarkers of NAFLD. Dig Dis Sci 2016; 61 (05) 1337-1347
  • 21 de Lédinghen V, Vergniol J, Capdepont M. , et al. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: a prospective study of 5323 examinations. J Hepatol 2014; 60 (05) 1026-1031
  • 22 Lin SC, Heba E, Wolfson T. , et al. Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat using a new quantitative ultrasound technique. Clin Gastroenterol Hepatol 2015; 13 (07) 1337-1345.e6
  • 23 Imbault M, Faccinetto A, Osmanski BF. , et al. Robust speed estimation for ultrasound-based hepatic steatosis assessment. Phys Med Biol 2017; 62 (09) 3582-3598
  • 24 Berzigotti A. Getting closer to a point-of-care diagnostic assessment in patients with chronic liver disease: controlled attenuation parameter for steatosis. J Hepatol 2014; 60 (05) 910-912
  • 25 Imajo K, Kessoku T, Honda Y. , et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 2016; 150 (03) 626-637.e7
  • 26 Park SH, Kim PN, Kim KW. , et al. Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment. Radiology 2006; 239 (01) 105-112
  • 27 Ma J, Song ZQ, Yan FH. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study. PLoS One 2014; 9 (10) e110964
  • 28 Dulai PS, Sirlin CB, Loomba R. MRI and MRE for non-invasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH: clinical trials to clinical practice. J Hepatol 2016; 65 (05) 1006-1016
  • 29 Goceri E, Shah ZK, Layman R, Jiang X, Gurcan MN. Quantification of liver fat: A comprehensive review. Comput Biol Med 2016; 71: 174-189
  • 30 Szczepaniak LS, Nurenberg P, Leonard D. , et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288 (02) E462-E468
  • 31 Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008; 60 (05) 1122-1134
  • 32 Hamilton G, Yokoo T, Bydder M. , et al. In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed 2011; 24 (07) 784-790
  • 33 Reeder SB, Robson PM, Yu H. , et al. Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 2009; 29 (06) 1332-1339
  • 34 Reeder SB, Cruite I, Hamilton G, Sirlin CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011; 34 (04) 729-749
  • 35 Hu HH, Börnert P, Hernando D. , et al. ISMRM workshop on fat-water separation: insights, applications and progress in MRI. Magn Reson Med 2012; 68 (02) 378-388
  • 36 Eggers H, Börnert P. Chemical shift encoding-based water-fat separation methods. J Magn Reson Imaging 2014; 40 (02) 251-268
  • 37 Leporq B, Ratiney H, Pilleul F, Beuf O. Liver fat volume fraction quantification with fat and water T1 and T2* estimation and accounting for NMR multiple components in patients with chronic liver disease at 1.5 and 3.0 T. Eur Radiol 2013; 23 (08) 2175-2186
  • 38 Kühn JP, Hernando D, Mensel B. , et al. Quantitative chemical shift-encoded MRI is an accurate method to quantify hepatic steatosis. J Magn Reson Imaging 2014; 39 (06) 1494-1501
  • 39 Berglund J, Ahlström H, Kullberg J. Model-based mapping of fat unsaturation and chain length by chemical shift imaging--phantom validation and in vivo feasibility. Magn Reson Med 2012; 68 (06) 1815-1827
  • 40 Leporq B, Lambert SA, Ronot M. , et al. Hepatic fat fraction and visceral adipose tissue fatty acid composition in mice: Quantification with 7.0T MRI. Magn Reson Med 2016; 76 (02) 510-518
  • 41 Kris-Etherton PM, Fleming JA. Emerging nutrition science on fatty acids and cardiovascular disease: nutritionists' perspectives. Adv Nutr 2015; 6 (03) 326S-337S
  • 42 Banerjee R, Pavlides M, Tunnicliffe EM. , et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 2014; 60 (01) 69-77
  • 43 Meisamy S, Hines CD, Hamilton G. , et al. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011; 258 (03) 767-775
  • 44 Tang A, Tan J, Sun M. , et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013; 267 (02) 422-431
  • 45 Marsman H, Matsushita T, Dierkhising R. , et al. Assessment of donor liver steatosis: pathologist or automated software?. Hum Pathol 2004; 35 (04) 430-435
  • 46 Turlin B, Ramm GA, Purdie DM. , et al. Assessment of hepatic steatosis: comparison of quantitative and semiquantitative methods in 108 liver biopsies. Liver Int 2009; 29 (04) 530-535
  • 47 Noworolski SM, Lam MM, Merriman RB, Ferrell L, Qayyum A. Liver steatosis: concordance of MR imaging and MR spectroscopic data with histologic grade. Radiology 2012; 264 (01) 88-96
  • 48 Tang A, Desai A, Hamilton G. , et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 2015; 274 (02) 416-425
  • 49 Yoon JH, Lee JM, Suh KS. , et al. Combined use of MR fat quantification and MR elastography in living liver donors: can it reduce the need for preoperative liver biopsy?. Radiology 2015; 276 (02) 453-464
  • 50 Sharma A, Ashworth A, Behnke M, Cotterell A, Posner M, Fisher RA. Donor selection for adult-to-adult living donor liver transplantation: well begun is half done. Transplantation 2013; 95 (03) 501-506
  • 51 Raptis DA, Fischer MA, Graf R. , et al. MRI: the new reference standard in quantifying hepatic steatosis?. Gut 2012; 61 (01) 117-127
  • 52 d'Assignies G, Fayard C, Leitao H. , et al. Liver steatosis assessed by preoperative MRI: An independent risk factor for severe complications after major hepatic resection. Surgery 2016; 159 (04) 1050-1057
  • 53 Noureddin M, Lam J, Peterson MR. , et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 2013; 58 (06) 1930-1940
  • 54 Loomba R, Sirlin CB, Ang B. , et al; San Diego Integrated NAFLD Research Consortium (SINC). Ezetimibe for the treatment of nonalcoholic steatohepatitis: assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). Hepatology 2015; 61 (04) 1239-1250
  • 55 Byrne CD, Targher G. Time to replace assessment of liver histology with MR-based imaging tests to assess efficacy of interventions for nonalcoholic fatty liver disease. Gastroenterology 2016; 150 (01) 7-10
  • 56 Sanyal AJ, Neuschwander-Tetri BA, Tonascia J. End points must be clinically meaningful for drug development in nonalcoholic fatty liver disease. Gastroenterology 2016; 150 (01) 11-13
  • 57 Wood JC. Estimating tissue iron burden: current status and future prospects. Br J Haematol 2015; 170 (01) 15-28
  • 58 Wood JC, Mo A, Gera A, Koh M, Coates T, Gilsanz V. Quantitative computed tomography assessment of transfusional iron overload. Br J Haematol 2011; 153 (06) 780-785
  • 59 Luo XF, Xie XQ, Cheng S. , et al. Dual-energy CT for patients suspected of having liver iron overload: can virtual iron content imaging accurately quantify liver iron content?. Radiology 2015; 277 (01) 95-103
  • 60 Brittenham GM. Reference method for measurement of the hepatic iron concentration. Am J Hematol 2015; 90 (02) 85-86
  • 61 Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin N Am 2010; 18 (03) 359-381 , ix ix
  • 62 Gandon Y, Olivié D, Guyader D. , et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004; 363 (9406): 357-362
  • 63 Castiella A, Alústiza JM, Emparanza JI, Zapata EM, Costero B, Díez MI. Liver iron concentration quantification by MRI: are recommended protocols accurate enough for clinical practice?. Eur Radiol 2011; 21 (01) 137-141
  • 64 St Pierre TG, Clark PR, Chua-anusorn W. , et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 2005; 105 (02) 855-861
  • 65 St Pierre TG, El-Beshlawy A, Elalfy M. , et al. Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med 2014; 71 (06) 2215-2223
  • 66 Wood JC, Enriquez C, Ghugre N. , et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106 (04) 1460-1465
  • 67 Hankins JS, McCarville MB, Loeffler RB. , et al. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 2009; 113 (20) 4853-4855
  • 68 Ghugre NR, Wood JC. Relaxivity-iron calibration in hepatic iron overload: probing underlying biophysical mechanisms using a Monte Carlo model. Magn Reson Med 2011; 65 (03) 837-847
  • 69 Sarigianni M, Liakos A, Vlachaki E. , et al. Accuracy of magnetic resonance imaging in diagnosis of liver iron overload: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2015; 13 (01) 55-63.e5
  • 70 Hernando D, Kramer JH, Reeder SB. Multipeak fat-corrected complex R2* relaxometry: theory, optimization, and clinical validation. Magn Reson Med 2013; 70 (05) 1319-1331
  • 71 Storey P, Thompson AA, Carqueville CL, Wood JC, de Freitas RA, Rigsby CK. R2* imaging of transfusional iron burden at 3T and comparison with 1.5T. J Magn Reson Imaging 2007; 25 (03) 540-547
  • 72 Ghugre NR, Doyle EK, Storey P, Wood JC. Relaxivity-iron calibration in hepatic iron overload: Predictions of a Monte Carlo model. Magn Reson Med 2015; 74 (03) 879-883
  • 73 Kirk P, He T, Anderson LJ. , et al. International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers. J Magn Reson Imaging 2010; 32 (02) 315-319
  • 74 Wood JC, Zhang P, Rienhoff H, Abi-Saab W, Neufeld E. R2 and R2* are equally effective in evaluating chronic response to iron chelation. Am J Hematol 2014; 89 (05) 505-508
  • 75 Wood JC, Zhang P, Rienhoff H, Abi-Saab W, Neufeld EJ. Liver MRI is more precise than liver biopsy for assessing total body iron balance: a comparison of MRI relaxometry with simulated liver biopsy results. Magn Reson Imaging 2015; 33 (06) 761-767
  • 76 Fischer R, Piga A, Harmatz P, Nielsen P. Monitoring long-term efficacy of iron chelation treatment with biomagnetic liver susceptometry. Ann N Y Acad Sci 2005; 1054: 350-357
  • 77 Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR Biomed 2017; 30 (04)
  • 78 Sharma SD, Hernando D, Horng DE, Reeder SB. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med 2015; 74 (03) 673-683
  • 79 Sharma SD, Fischer R, Schoennagel BP. , et al. MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: Comparison with SQUID-based biomagnetic liver susceptometry. Magn Reson Med 2016; . [Epub ahead of print]
  • 80 Shiina T, Nightingale KR, Palmeri ML. , et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol 2015; 41 (05) 1126-1147
  • 81 Friedrich-Rust M, Poynard T, Castera L. Critical comparison of elastography methods to assess chronic liver disease. Nat Rev Gastroenterol Hepatol 2016; 13 (07) 402-411
  • 82 Sandrin L, Tanter M, Catheline S, Fink M. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49 (04) 426-435
  • 83 Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 2002; 28 (02) 227-235
  • 84 Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51 (04) 396-409
  • 85 Chen S, Sanchez W, Callstrom MR. , et al. Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force. Radiology 2013; 266 (03) 964-970
  • 86 Procopet B, Berzigotti A, Abraldes JG. , et al. Real-time shear-wave elastography: applicability, reliability and accuracy for clinically significant portal hypertension. J Hepatol 2015; 62 (05) 1068-1075
  • 87 Castéra L, Foucher J, Bernard PH. , et al. Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 2010; 51 (03) 828-835
  • 88 Elkrief L, Rautou PE, Ronot M. , et al. Prospective comparison of spleen and liver stiffness by using shear-wave and transient elastography for detection of portal hypertension in cirrhosis. Radiology 2015; 275 (02) 589-598
  • 89 Cassinotto C, Boursier J, de Lédinghen V. , et al. Liver stiffness in nonalcoholic fatty liver disease: A comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. Hepatology 2016; 63 (06) 1817-1827
  • 90 Fraquelli M, Rigamonti C, Casazza G. , et al. Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut 2007; 56 (07) 968-973
  • 91 Hudson JM, Milot L, Parry C, Williams R, Burns PN. Inter- and intra-operator reliability and repeatability of shear wave elastography in the liver: a study in healthy volunteers. Ultrasound Med Biol 2013; 39 (06) 950-955
  • 92 Nascimbeni F, Lebray P, Fedchuk L. , et al; LIDO Study Group. Significant variations in elastometry measurements made within short-term in patients with chronic liver diseases. Clin Gastroenterol Hepatol 2015; 13 (04) 763-71.e1 , 6
  • 93 Arena U, Lupsor Platon M, Stasi C. , et al. Liver stiffness is influenced by a standardized meal in patients with chronic hepatitis C virus at different stages of fibrotic evolution. Hepatology 2013; 58 (01) 65-72
  • 94 Coco B, Oliveri F, Maina AM. , et al. Transient elastography: a new surrogate marker of liver fibrosis influenced by major changes of transaminases. J Viral Hepat 2007; 14 (05) 360-369
  • 95 Arena U, Vizzutti F, Corti G. , et al. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology 2008; 47 (02) 380-384
  • 96 Millonig G, Reimann FM, Friedrich S. , et al. Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis. Hepatology 2008; 48 (05) 1718-1723
  • 97 Millonig G, Friedrich S, Adolf S. , et al. Liver stiffness is directly influenced by central venous pressure. J Hepatol 2010; 52 (02) 206-210
  • 98 Ronot M, Lambert S, Elkrief L. , et al. Assessment of portal hypertension and high-risk oesophageal varices with liver and spleen three-dimensional multifrequency MR elastography in liver cirrhosis. Eur Radiol 2014; 24 (06) 1394-1402
  • 99 Jansen C, Bogs C, Verlinden W. , et al. Shear-wave elastography of the liver and spleen identifies clinically significant portal hypertension: A prospective multicentre study. Liver Int 2017; 37 (03) 396-405
  • 100 Friedrich-Rust M, Ong MF, Martens S. , et al. Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 2008; 134 (04) 960-974
  • 101 Tsochatzis EA, Gurusamy KS, Ntaoula S, Cholongitas E, Davidson BR, Burroughs AK. Elastography for the diagnosis of severity of fibrosis in chronic liver disease: a meta-analysis of diagnostic accuracy. J Hepatol 2011; 54 (04) 650-659
  • 102 Friedrich-Rust M, Nierhoff J, Lupsor M. , et al. Performance of Acoustic Radiation Force Impulse imaging for the staging of liver fibrosis: a pooled meta-analysis. J Viral Hepat 2012; 19 (02) e212-e219
  • 103 Bavu E, Gennisson JL, Couade M. , et al. Noninvasive in vivo liver fibrosis evaluation using supersonic shear imaging: a clinical study on 113 hepatitis C virus patients. Ultrasound Med Biol 2011; 37 (09) 1361-1373
  • 104 Leung VY, Shen J, Wong VW. , et al. Quantitative elastography of liver fibrosis and spleen stiffness in chronic hepatitis B carriers: comparison of shear-wave elastography and transient elastography with liver biopsy correlation. Radiology 2013; 269 (03) 910-918
  • 105 Cassinotto C, Lapuyade B, Mouries A. , et al. Non-invasive assessment of liver fibrosis with impulse elastography: comparison of Supersonic Shear Imaging with ARFI and FibroScan®. J Hepatol 2014; 61 (03) 550-557
  • 106 Low G, Kruse SA, Lomas DJ. General review of magnetic resonance elastography. World J Radiol 2016; 8 (01) 59-72
  • 107 Sinkus R, Tanter M, Xydeas T, Catheline S, Bercoff J, Fink M. Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn Reson Imaging 2005; 23 (02) 159-165
  • 108 Huwart L, Peeters F, Sinkus R. , et al. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 2006; 19 (02) 173-179
  • 109 Garteiser P, Sahebjavaher RS, Ter Beek LC. , et al. Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence. NMR Biomed 2013; 26 (10) 1326-1335
  • 110 Dittmann F, Hirsch S, Tzschätzsch H, Guo J, Braun J, Sack I. In vivo wideband multifrequency MR elastography of the human brain and liver. Magn Reson Med 2016; 76 (04) 1116-1126
  • 111 Yin M, Glaser KJ, Manduca A. , et al. Distinguishing between hepatic inflammation and fibrosis with MR elastography. Radiology 2017; •••: 160622
  • 112 Sinkus R, Siegmann K, Xydeas T, Tanter M, Claussen C, Fink M. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med 2007; 58 (06) 1135-1144
  • 113 Hirsch S, Guo J, Reiter R. , et al. MR elastography of the liver and the spleen using a piezoelectric driver, single-shot wave-field acquisition, and multifrequency dual parameter reconstruction. Magn Reson Med 2014; 71 (01) 267-277
  • 114 Yoon JH, Lee JM, Joo I. , et al. Hepatic fibrosis: prospective comparison of MR elastography and US shear-wave elastography for evaluation. Radiology 2014; 273 (03) 772-782
  • 115 Hines CD, Bley TA, Lindstrom MJ, Reeder SB. Repeatability of magnetic resonance elastography for quantification of hepatic stiffness. J Magn Reson Imaging 2010; 31 (03) 725-731
  • 116 Bohte AE, Garteiser P, De Niet A. , et al. MR elastography of the liver: defining thresholds for detecting viscoelastic changes. Radiology 2013; 269 (03) 768-776
  • 117 Trout AT, Dillman JR, Xanthakos S. , et al. Prospective assessment of correlation between US acoustic radiation force impulse and MR elastography in a pediatric population: dispersion of US shear-wave speed measurement matters. Radiology 2016; 281 (02) 544-552
  • 118 Yasar TK, Wagner M, Bane O. , et al. Interplatform reproducibility of liver and spleen stiffness measured with MR elastography. J Magn Reson Imaging 2016; 43 (05) 1064-1072
  • 119 Serai SD, Yin M, Wang H, Ehman RL, Podberesky DJ. Cross-vendor validation of liver magnetic resonance elastography. Abdom Imaging 2015; 40 (04) 789-794
  • 120 Yin M, Talwalkar JA, Glaser KJ. , et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 2007; 5 (10) 1207-1213.e2
  • 121 Huwart L, Sempoux C, Salameh N. , et al. Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ratio index. Radiology 2007; 245 (02) 458-466
  • 122 Asbach P, Klatt D, Schlosser B. , et al. Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography. Radiology 2010; 257 (01) 80-86
  • 123 Yin M, Glaser KJ, Talwalkar JA, Chen J, Manduca A, Ehman RL. Hepatic MR elastography: clinical performance in a series of 1377 consecutive examinations. Radiology 2016; 278 (01) 114-124
  • 124 Wang QB, Zhu H, Liu HL, Zhang B. Performance of magnetic resonance elastography and diffusion-weighted imaging for the staging of hepatic fibrosis: a meta-analysis. Hepatology 2012; 56 (01) 239-247
  • 125 Su LN, Guo SL, Li BX, Yang P. Diagnostic value of magnetic resonance elastography for detecting and staging of hepatic fibrosis: a meta-analysis. Clin Radiol 2014; 69 (12) e545-e552
  • 126 Guo Y, Parthasarathy S, Goyal P, McCarthy RJ, Larson AC, Miller FH. Magnetic resonance elastography and acoustic radiation force impulse for staging hepatic fibrosis: a meta-analysis. Abdom Imaging 2015; 40 (04) 818-834
  • 127 Singh S, Fujii LL, Murad MH. , et al. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2013; 11 (12) 1573-1584.e1 , 2, quiz e88–e89
  • 128 Ichikawa S, Motosugi U, Morisaka H. , et al. Comparison of the diagnostic accuracies of magnetic resonance elastography and transient elastography for hepatic fibrosis. Magn Reson Imaging 2015; 33 (01) 26-30
  • 129 Dyvorne HA, Jajamovich GH, Bane O. , et al. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection. Liver Int 2016; 36 (05) 659-666
  • 130 Cui J, Ang B, Haufe W. , et al. Comparative diagnostic accuracy of magnetic resonance elastography vs. eight clinical prediction rules for non-invasive diagnosis of advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease: a prospective study. Aliment Pharmacol Ther 2015; 41 (12) 1271-1280
  • 131 Salameh N, Peeters F, Sinkus R. , et al. Hepatic viscoelastic parameters measured with MR elastography: correlations with quantitative analysis of liver fibrosis in the rat. J Magn Reson Imaging 2007; 26 (04) 956-962
  • 132 Ronot M, Lambert SA, Wagner M. , et al. Viscoelastic parameters for quantifying liver fibrosis: three-dimensional multifrequency MR elastography study on thin liver rat slices. PLoS One 2014; 9 (04) e94679
  • 133 Reiter R, Freise C, Jöhrens K. , et al. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis. J Biomech 2014; 47 (07) 1665-1674
  • 134 Vergniol J, Boursier J, Coutzac C. , et al. Evolution of noninvasive tests of liver fibrosis is associated with prognosis in patients with chronic hepatitis C. Hepatology 2014; 60 (01) 65-76
  • 135 Corpechot C, Gaouar F, El Naggar A. , et al. Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology 2014; 146 (04) 970-979 , quiz e15–e16
  • 136 Boursier J, Vergniol J, Guillet A. , et al. Diagnostic accuracy and prognostic significance of blood fibrosis tests and liver stiffness measurement by FibroScan in non-alcoholic fatty liver disease. J Hepatol 2016; 65 (03) 570-578
  • 137 Canavan C, Eisenburg J, Meng L, Corey K, Hur C. Ultrasound elastography for fibrosis surveillance is cost effective in patients with chronic hepatitis C virus in the UK. Dig Dis Sci 2013; 58 (09) 2691-2704
  • 138 Crossan C, Tsochatzis EA, Longworth L. , et al. Cost-effectiveness of non-invasive methods for assessment and monitoring of liver fibrosis and cirrhosis in patients with chronic liver disease: systematic review and economic evaluation. Health Technol Assess 2015; 19 (09) 1-409 , v–vi v–vi
  • 139 Tapper EB, Sengupta N, Hunink MG, Afdhal NH, Lai M. Cost-effective evaluation of nonalcoholic fatty liver disease with NAFLD fibrosis score and vibration controlled transient elastography. Am J Gastroenterol 2015; 110 (09) 1298-1304
  • 140 Zhang E, Wartelle-Bladou C, Lepanto L, Lachaine J, Cloutier G, Tang A. Cost-utility analysis of nonalcoholic steatohepatitis screening. Eur Radiol 2015; 25 (11) 3282-3294
  • 141 Hagiwara M, Rusinek H, Lee VS. , et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging--initial experience. Radiology 2008; 246 (03) 926-934
  • 142 Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010; 31 (03) 589-600
  • 143 Van Beers BE, Pastor CM, Hussain HK. Primovist, Eovist: what to expect?. J Hepatol 2012; 57 (02) 421-429
  • 144 Hardwick RN, Fisher CD, Street SM, Canet MJ, Cherrington NJ. Molecular mechanism of altered ezetimibe disposition in nonalcoholic steatohepatitis. Drug Metab Dispos 2012; 40 (03) 450-460
  • 145 Lagadec M, Doblas S, Giraudeau C. , et al. Advanced fibrosis: correlation between pharmacokinetic parameters at dynamic gadoxetate-enhanced MR imaging and hepatocyte organic anion transporter expression in rat liver. Radiology 2015; 274 (02) 379-386
  • 146 Giraudeau C, Leporq B, Doblas S. , et al. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis. Eur Radiol 2017; 27 (05) 1804-1811
  • 147 Feier D, Balassy C, Bastati N, Stift J, Badea R, Ba-Ssalamah A. Liver fibrosis: histopathologic and biochemical influences on diagnostic efficacy of hepatobiliary contrast-enhanced MR imaging in staging. Radiology 2013; 269 (02) 460-468
  • 148 Norén B, Forsgren MF, Dahlqvist Leinhard O. , et al. Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA. Eur Radiol 2013; 23 (01) 174-181
  • 149 Choi YR, Lee JM, Yoon JH, Han JK, Choi BI. Comparison of magnetic resonance elastography and gadoxetate disodium-enhanced magnetic resonance imaging for the evaluation of hepatic fibrosis. Invest Radiol 2013; 48 (08) 607-613
  • 150 Wu Z, Matsui O, Kitao A. , et al. Hepatitis C related chronic liver cirrhosis: feasibility of texture analysis of MR images for classification of fibrosis stage and necroinflammatory activity grade. PLoS One 2015; 10 (03) e0118297
  • 151 Choi JY, Kim H, Sun M, Sirlin CB. Histogram analysis of hepatobiliary phase MR imaging as a quantitative value for liver cirrhosis: preliminary observations. Yonsei Med J 2014; 55 (03) 651-659
  • 152 Lewin M, Poujol-Robert A, Boëlle PY. , et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. Hepatology 2007; 46 (03) 658-665
  • 153 Leitão HS, Doblas S, Garteiser P. , et al. Hepatic fibrosis, inflammation, and steatosis: influence on the MR viscoelastic and diffusion parameters in patients with chronic liver disease. Radiology 2017; 283 (01) 98-107
  • 154 Annet L, Peeters F, Abarca-Quinones J, Leclercq I, Moulin P, Van Beers BE. Assessment of diffusion-weighted MR imaging in liver fibrosis. J Magn Reson Imaging 2007; 25 (01) 122-128
  • 155 Luciani A, Vignaud A, Cavet M. , et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 2008; 249 (03) 891-899
  • 156 Leitão HS, Doblas S, d'Assignies G. , et al. Fat deposition decreases diffusion parameters at MRI: a study in phantoms and patients with liver steatosis. Eur Radiol 2013; 23 (02) 461-467
  • 157 Hoad CL, Palaniyappan N, Kaye P. , et al. A study of T1 relaxation time as a measure of liver fibrosis and the influence of confounding histological factors. NMR Biomed 2015; 28 (06) 706-714
  • 158 Pavlides M, Banerjee R, Sellwood J. , et al. Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J Hepatol 2016; 64 (02) 308-315
  • 159 Tunnicliffe EM, Banerjee R, Pavlides M, Neubauer S, Robson MD. A model for hepatic fibrosis: the competing effects of cell loss and iron on shortened modified Look-Locker inversion recovery T1 (shMOLLI-T1 ) in the liver. J Magn Reson Imaging 2017; 45 (02) 450-462
  • 160 Xie L, Sparks MA, Li W. , et al. Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice. NMR Biomed 2013; 26 (12) 1853-1863
  • 161 Rosenkrantz AB, Storey P, Gilet AG. , et al. Magnetization transfer contrast-prepared MR imaging of the liver: inability to distinguish healthy from cirrhotic liver. Radiology 2012; 262 (01) 136-143
  • 162 Allkemper T, Sagmeister F, Cicinnati V. , et al. Evaluation of fibrotic liver disease with whole-liver T1ρ MR imaging: a feasibility study at 1.5 T. Radiology 2014; 271 (02) 408-415
  • 163 Shi Y, Guo Q, Xia F. , et al. MR elastography for the assessment of hepatic fibrosis in patients with chronic hepatitis B infection: does histologic necroinflammation influence the measurement of hepatic stiffness?. Radiology 2014; 273 (01) 88-98
  • 164 Mueller S, Englert S, Seitz HK. , et al. Inflammation-adapted liver stiffness values for improved fibrosis staging in patients with hepatitis C virus and alcoholic liver disease. Liver Int 2015; 35 (12) 2514-2521
  • 165 Chan HL, Wong GL, Choi PC. , et al. Alanine aminotransferase-based algorithms of liver stiffness measurement by transient elastography (Fibroscan) for liver fibrosis in chronic hepatitis B. J Viral Hepat 2009; 16 (01) 36-44
  • 166 Salameh N, Larrat B, Abarca-Quinones J. , et al. Early detection of steatohepatitis in fatty rat liver by using MR elastography. Radiology 2009; 253 (01) 90-97
  • 167 Chen J, Talwalkar JA, Yin M, Glaser KJ, Sanderson SO, Ehman RL. Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology 2011; 259 (03) 749-756
  • 168 Loomba R, Cui J, Wolfson T. , et al. Novel 3D Magnetic Resonance Elastography for the Noninvasive Diagnosis of Advanced Fibrosis in NAFLD: A Prospective Study. Am J Gastroenterol 2016; 111 (07) 986-994
  • 169 Bastati N, Feier D, Wibmer A. , et al. Noninvasive differentiation of simple steatosis and steatohepatitis by using gadoxetic acid-enhanced MR imaging in patients with nonalcoholic fatty liver disease: a proof-of-concept study. Radiology 2014; 271 (03) 739-747
  • 170 Abrigo JM, Shen J, Wong VW. , et al. Non-alcoholic fatty liver disease: spectral patterns observed from an in vivo phosphorus magnetic resonance spectroscopy study. J Hepatol 2014; 60 (04) 809-815
  • 171 Smits LP, Coolen BF, Panno MD. , et al. Noninvasive differentiation between hepatic steatosis and steatohepatitis with MR imaging enhanced with USPIOs in patients with nonalcoholic fatty liver disease: a proof-of-concept study. Radiology 2016; 278 (03) 782-791
  • 172 Kim TH, Jun HY, Kim KJ. , et al. Hepatic alanine differentiates nonalcoholic steatohepatitis from simple steatosis in humans and mice: a proton MR spectroscopy study with long echo time. J Magn Reson Imaging 2017; . [Epub ahead of print]
  • 173 Angulo P, Kleiner DE, Dam-Larsen S. , et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 2015; 149 (02) 389-397.e10
  • 174 Loomba R, Chalasani N. The hierarchical model of NAFLD: prognostic significance of histologic features in NASH. Gastroenterology 2015; 149 (02) 278-281
  • 175 Bedossa P, Patel K. Biopsy and noninvasive methods to assess progression of nonalcoholic fatty liver disease. Gastroenterology 2016; 150 (08) 1811-1822.e4
  • 176 Kim D, Kim WR, Talwalkar JA, Kim HJ, Ehman RL. Advanced fibrosis in nonalcoholic fatty liver disease: noninvasive assessment with MR elastography. Radiology 2013; 268 (02) 411-419
  • 177 Cui J, Heba E, Hernandez C. , et al. Magnetic resonance elastography is superior to acoustic radiation force impulse for the diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: a prospective study. Hepatology 2016; 63 (02) 453-461
  • 178 Carrión JA, Navasa M, Bosch J, Bruguera M, Gilabert R, Forns X. Transient elastography for diagnosis of advanced fibrosis and portal hypertension in patients with hepatitis C recurrence after liver transplantation. Liver Transpl 2006; 12 (12) 1791-1798
  • 179 Vizzutti F, Arena U, Romanelli RG. , et al. Liver stiffness measurement predicts severe portal hypertension in patients with HCV-related cirrhosis. Hepatology 2007; 45 (05) 1290-1297
  • 180 Berzigotti A, Seijo S, Arena U. , et al. Elastography, spleen size, and platelet count identify portal hypertension in patients with compensated cirrhosis. Gastroenterology 2013; 144 (01) 102-111.e1
  • 181 Shi KQ, Fan YC, Pan ZZ. , et al. Transient elastography: a meta-analysis of diagnostic accuracy in evaluation of portal hypertension in chronic liver disease. Liver Int 2013; 33 (01) 62-71
  • 182 Reiberger T, Ferlitsch A, Payer BA, Pinter M, Homoncik M, Peck-Radosavljevic M. ; Vienna Hepatic Hemodynamic Lab. Non-selective β-blockers improve the correlation of liver stiffness and portal pressure in advanced cirrhosis. J Gastroenterol 2012; 47 (05) 561-568
  • 183 Rotemberg V, Palmeri M, Nightingale R, Rouze N, Nightingale K. The impact of hepatic pressurization on liver shear wave speed estimates in constrained versus unconstrained conditions. Phys Med Biol 2012; 57 (02) 329-341
  • 184 Hirsch S, Guo J, Reiter R. , et al. Towards compression-sensitive magnetic resonance elastography of the liver: sensitivity of harmonic volumetric strain to portal hypertension. J Magn Reson Imaging 2014; 39 (02) 298-306
  • 185 Perepelyuk M, Chin L, Cao X. , et al. Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: a model for soft tissue mechanics. PLoS One 2016; 11 (01) e0146588
  • 186 Rotemberg V, Byram B, Palmeri M, Wang M, Nightingale K. Ultrasonic characterization of the nonlinear properties of canine livers by measuring shear wave speed and axial strain with increasing portal venous pressure. J Biomech 2013; 46 (11) 1875-1881
  • 187 de Franchis R. ; Baveno VI Faculty. Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol 2015; 63 (03) 743-752
  • 188 Perazzo H, Fernandes FF, Castro Filho EC, Perez RM. Points to be considered when using transient elastography for diagnosis of portal hypertension according to the Baveno's VI consensus. J Hepatol 2015; 63 (04) 1048-1049
  • 189 Colecchia A, Montrone L, Scaioli E. , et al. Measurement of spleen stiffness to evaluate portal hypertension and the presence of esophageal varices in patients with HCV-related cirrhosis. Gastroenterology 2012; 143 (03) 646-654
  • 190 Takuma Y, Nouso K, Morimoto Y. , et al. Measurement of spleen stiffness by acoustic radiation force impulse imaging identifies cirrhotic patients with esophageal varices. Gastroenterology 2013; 144 (01) 92-101.e2
  • 191 Cassinotto C, Charrie A, Mouries A. , et al. Liver and spleen elastography using supersonic shear imaging for the non-invasive diagnosis of cirrhosis severity and oesophageal varices. Dig Liver Dis 2015; 47 (08) 695-701
  • 192 Shin SU, Lee JM, Yu MH. , et al. Prediction of esophageal varices in patients with cirrhosis: usefulness of three-dimensional MR elastography with echo-planar imaging technique. Radiology 2014; 272 (01) 143-153
  • 193 Asrani SK, Talwalkar JA, Kamath PS. , et al. Role of magnetic resonance elastography in compensated and decompensated liver disease. J Hepatol 2014; 60 (05) 934-939
  • 194 Choi SY, Jeong WK, Kim Y, Kim J, Kim TY, Sohn JH. Shear-wave elastography: a noninvasive tool for monitoring changing hepatic venous pressure gradients in patients with cirrhosis. Radiology 2014; 273 (03) 917-926
  • 195 Guo J, Büning C, Schott E. , et al. In vivo abdominal magnetic resonance elastography for the assessment of portal hypertension before and after transjugular intrahepatic portosystemic shunt implantation. Invest Radiol 2015; 50 (05) 347-351
  • 196 Stankovic Z, Csatari Z, Deibert P. , et al. Normal and altered three-dimensional portal venous hemodynamics in patients with liver cirrhosis. Radiology 2012; 262 (03) 862-873
  • 197 Dyvorne H, Knight-Greenfield A, Jajamovich G. , et al. Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition. Radiology 2015; 275 (01) 245-254
  • 198 Palaniyappan N, Cox E, Bradley C. , et al. Non-invasive assessment of portal hypertension using quantitative magnetic resonance imaging. J Hepatol 2016; 65 (06) 1131-1139
  • 199 Jeong WK, Kim TY, Sohn JH, Kim Y, Kim J. Severe portal hypertension in cirrhosis: evaluation of perfusion parameters with contrast-enhanced ultrasonography. PLoS One 2015; 10 (03) e0121601
  • 200 Errico C, Pierre J, Pezet S. , et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 2015; 527 (7579): 499-502
  • 201 Kim G, Shim KY, Baik SK. Diagnostic accuracy of hepatic vein arrival time performed with contrast-enhanced ultrasonography for cirrhosis: a systematic review and meta-analysis. Gut Liver 2017; 11 (01) 93-101
  • 202 Goh V, Schaeffter T, Leach M. Reproducibility of dynamic contrast-enhanced MR imaging: why we should care. Radiology 2013; 266 (03) 698-700
  • 203 Bennink RJ, Tulchinsky M, de Graaf W, Kadry Z, van Gulik TM. Liver function testing with nuclear medicine techniques is coming of age. Semin Nucl Med 2012; 42 (02) 124-137
  • 204 Cieslak KP, Runge JH, Heger M, Stoker J, Bennink RJ, van Gulik TM. New perspectives in the assessment of future remnant liver. Dig Surg 2014; 31 (4-5): 255-268
  • 205 de Graaf W, Häusler S, Heger M. , et al. Transporters involved in the hepatic uptake of (99m)Tc-mebrofenin and indocyanine green. J Hepatol 2011; 54 (04) 738-745
  • 206 de Graaf W, van Lienden KP, van Gulik TM, Bennink RJ. (99m)Tc-mebrofenin hepatobiliary scintigraphy with SPECT for the assessment of hepatic function and liver functional volume before partial hepatectomy. J Nucl Med 2010; 51 (02) 229-236
  • 207 Neyt S, Vliegen M, Verreet B. , et al. Synthesis, in vitro and in vivo small-animal SPECT evaluation of novel technetium labeled bile acid analogues to study (altered) hepatic transporter function. Nucl Med Biol 2016; 43 (10) 642-649
  • 208 Sørensen M, Munk OL, Ørntoft NW. , et al. Hepatobiliary secretion kinetics of conjugated bile acids measured in pigs by 11C-cholylsarcosine PET. J Nucl Med 2016; 57 (06) 961-966
  • 209 Nilsson H, Blomqvist L, Douglas L. , et al. Gd-EOB-DTPA-enhanced MRI for the assessment of liver function and volume in liver cirrhosis. Br J Radiol 2013; 86 (1026): 20120653
  • 210 Ba-Ssalamah A, Bastati N, Wibmer A. , et al. Hepatic gadoxetic acid uptake as a measure of diffuse liver disease: where are we?. J Magn Reson Imaging 2017; 45 (03) 646-659
  • 211 Wibmer A, Prusa AM, Nolz R, Gruenberger T, Schindl M, Ba-Ssalamah A. Liver failure after major liver resection: risk assessment by using preoperative Gadoxetic acid-enhanced 3-T MR imaging. Radiology 2013; 269 (03) 777-786