Semin Thromb Hemost 2018; 44(02): 126-134
DOI: 10.1055/s-0037-1604090
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Platelet CLEC-2: Roles Beyond Hemostasis

Katsue Suzuki-Inoue
1   Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
,
Nagaharu Tsukiji
1   Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
,
Toshiaki Shirai
1   Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
2   Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
,
Makoto Osada
3   School of Medical Technology, Faculty of Health Science, Gunma Paz University, Takasaki, Japan
,
Osamu Inoue
4   Infection Control Office, Yamanashi University Hospital, Yamanashi, Japan
,
Yukio Ozaki
5   Fuefuki Central Hospital, Fuefuki, Japan
› Author Affiliations
Further Information

Publication History

Publication Date:
09 October 2017 (online)

Abstract

C-type lectin-like receptor 2 (CLEC-2) has been identified on the surface of platelets as a receptor for a platelet activating snake venom, rhodocytin/aggretin. CLEC-2 belongs to a C-type lectin superfamily and binds to a sialoglycoprotein, podoplanin, in vivo. Platelets play a crucial role in hemostasis and thrombosis, but recent studies have uncovered multiple roles of platelets beyond hemostasis in physiology and pathology. The interaction between platelet CLEC-2 and podoplanin is the key to several roles of platelets beyond hemostasis. The spatial and temporal expression patterns of podoplanin regulate vascular/lymphatic development, maintenance of vascular integrity, tissue regeneration, and some pathological processes including tumor metastasis and thromboinflammation. CLEC-2 facilitates blood/lymphatic vessel separation during embryonic development by binding to podoplanin on lymphatic endothelial cells. The leakage of platelets from hyperpermeable vessels for maintaining vascular integrity during inflammation depends on CLEC-2. During wound healing, the expression of podoplanin in keratinocytes is upregulated, which helps in the process. Podoplanin is expressed on the surface of tumor cells and facilitates hematogenous metastasis by inducing platelet aggregation through CLEC-2. During thrombotic processes, such as development of deep vein thrombosis, podoplanin is upregulated on unknown cells in the vessel wall in the area of inflammation, facilitates thrombus formation, and promotes further inflammation by binding to CLEC-2. In this article, the roles of platelets beyond hemostasis are comprehensively reviewed.

 
  • References

  • 1 Colonna M, Samaridis J, Angman L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 2000; 30 (02) 697-704
  • 2 Suzuki-Inoue K, Inoue O, Ozaki Y. Novel platelet activation receptor CLEC-2: from discovery to prospects. J Thromb Haemost 2011; 9 (Suppl. 01) 44-55
  • 3 Suzuki-Inoue K, Fuller GL, García A. , et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 2006; 107 (02) 542-549
  • 4 Shin Y, Morita T. Rhodocytin, a functional novel platelet agonist belonging to the heterodimeric C-type lectin family, induces platelet aggregation independently of glycoprotein Ib. Biochem Biophys Res Commun 1998; 245 (03) 741-745
  • 5 Huang TF, Liu CZ, Yang SH. Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist. Biochem J 1995; 309 (Pt 3): 1021-1027
  • 6 Chaipan C, Soilleux EJ, Simpson P. , et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 2006; 80 (18) 8951-8960
  • 7 Tang T, Li L, Tang J. , et al. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol 2010; 28 (07) 749-755
  • 8 Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J Exp Med 2015; 212 (12) 2133-2146
  • 9 Tamura S, Suzuki-Inoue K, Tsukiji N. , et al. Podoplanin-positive periarteriolar stromal cells promote megakaryocyte growth and proplatelet formation in mice by CLEC-2. Blood 2016; 127 (13) 1701-1710
  • 10 Kerrigan AM, Dennehy KM, Mourão-Sá D. , et al. CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J Immunol 2009; 182 (07) 4150-4157
  • 11 Acton SE, Astarita JL, Malhotra D. , et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 2012; 37 (02) 276-289
  • 12 Astarita JL, Cremasco V, Fu J. , et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat Immunol 2015; 16 (01) 75-84
  • 13 Chang CH, Chung CH, Hsu CC, Huang TY, Huang TF. A novel mechanism of cytokine release in phagocytes induced by aggretin, a snake venom C-type lectin protein, through CLEC-2 ligation. J Thromb Haemost 2010; 8 (11) 2563-2570
  • 14 Lowe KL, Navarro-Núñez L, Bénézech C. , et al. The expression of mouse CLEC-2 on leucocyte subsets varies according to their anatomical location and inflammatory state. Eur J Immunol 2015; 45 (09) 2484-2493
  • 15 Fuller GL, Williams JA, Tomlinson MG. , et al. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem 2007; 282 (17) 12397-12409
  • 16 Séverin S, Pollitt AY, Navarro-Nuñez L. , et al. Syk-dependent phosphorylation of CLEC-2: a novel mechanism of hem-immunoreceptor tyrosine-based activation motif signaling. J Biol Chem 2011; 286 (06) 4107-4116
  • 17 Navarro-Núñez L, Langan SA, Nash GB, Watson SP. The physiological and pathophysiological roles of platelet CLEC-2. Thromb Haemost 2013; 109 (06) 991-998
  • 18 Watson SP, Auger JM, McCarty OJ, Pearce AC. GPVI and integrin alphaIIb beta3 signaling in platelets. J Thromb Haemost 2005; 3 (08) 1752-1762
  • 19 Tsuruo T, Fujita N. Platelet aggregation in the formation of tumor metastasis. Proc Jpn Acad Ser B Phys Biol Sci 2008; 84 (06) 189-198
  • 20 Tomooka M, Kaji C, Kojima H, Sawa Y. Distribution of podoplanin-expressing cells in the mouse nervous systems. Acta Histochem Cytochem 2013; 46 (06) 171-177
  • 21 Del Rey MJ, Faré R, Izquierdo E. , et al. Clinicopathological correlations of podoplanin (gp38) expression in rheumatoid synovium and its potential contribution to fibroblast platelet crosstalk. PLoS One 2014; 9 (06) e99607
  • 22 Suzuki-Inoue K, Inoue O, Ozaki Y. The novel platelet activation receptor CLEC-2. Platelets 2011; 22 (05) 380-384
  • 23 Kato Y, Kaneko MK, Kunita A. , et al. Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci 2008; 99 (01) 54-61
  • 24 Suzuki-Inoue K, Kato Y, Inoue O. , et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007; 282 (36) 25993-26001
  • 25 Christou CM, Pearce AC, Watson AA. , et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J 2008; 411 (01) 133-140
  • 26 Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 2010; 140 (04) 460-476
  • 27 Abtahian F, Guerriero A, Sebzda E. , et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 2003; 299 (5604): 247-251
  • 28 Sebzda E, Hibbard C, Sweeney S. , et al. Syk and Slp-76 mutant mice reveal a cell-autonomous hematopoietic cell contribution to vascular development. Dev Cell 2006; 11 (03) 349-361
  • 29 Levin J, Peng JP, Baker GR. , et al. Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2. Blood 1999; 94 (09) 3037-3047
  • 30 Bertozzi CC, Schmaier AA, Mericko P. , et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116 (04) 661-670
  • 31 Suzuki-Inoue K, Inoue O, Ding G. , et al. Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J Biol Chem 2010; 285 (32) 24494-24507
  • 32 Osada M, Inoue O, Ding G. , et al. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem 2012; 287 (26) 22241-22252
  • 33 Finney BA, Schweighoffer E, Navarro-Núñez L. , et al. CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development. Blood 2012; 119 (07) 1747-1756
  • 34 Carramolino L, Fuentes J, García-Andrés C, Azcoitia V, Riethmacher D, Torres M. Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. Circ Res 2010; 106 (07) 1197-1201
  • 35 Uhrin P, Zaujec J, Breuss JM. , et al. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 2010; 115 (19) 3997-4005
  • 36 Fu J, Gerhardt H, McDaniel JM. , et al. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest 2008; 118 (11) 3725-3737
  • 37 Ichise H, Ichise T, Ohtani O, Yoshida N. Phospholipase Cgamma2 is necessary for separation of blood and lymphatic vasculature in mice. Development 2009; 136 (02) 191-195
  • 38 Takagi S, Sato S, Oh-hara T. , et al. Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PLoS One 2013; 8 (08) e73609
  • 39 Pollitt AY, Hughes CE, Watson SP. GPVI and CLEC-2. In: Michelson AD. , ed. Platelets, 3rd ed. Amsterdam, The Netherlands: Elsevier; 2012: 215-231
  • 40 Pollitt AY, Poulter NS, Gitz E. , et al. Syk and Src family kinases regulate C-type lectin receptor 2 (CLEC-2)-mediated clustering of podoplanin and platelet adhesion to lymphatic endothelial cells. J Biol Chem 2014; 289 (52) 35695-35710
  • 41 Hess PR, Rawnsley DR, Jakus Z. , et al. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest 2014; 124 (01) 273-284
  • 42 Lowe KL, Finney BA, Deppermann C. , et al. Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood 2015; 125 (24) 3769-3777
  • 43 Goerge T, Ho-Tin-Noe B, Carbo C. , et al. Inflammation induces hemorrhage in thrombocytopenia. Blood 2008; 111 (10) 4958-4964
  • 44 Boulaftali Y, Hess PR, Getz TM. , et al. Platelet ITAM signaling is critical for vascular integrity in inflammation. J Clin Invest 2013; 123 (02) 908-916
  • 45 Mielke Jr CH. Aspirin prolongation of the template bleeding time: influence of venostasis and direction of incision. Blood 1982; 60 (05) 1139-1142
  • 46 Bird JE, Smith PL, Bostwick JS, Shipkova P, Schumacher WA. Bleeding response induced by anti-thrombotic doses of a phosphoinositide 3-kinase (PI3K)-β inhibitor in mice. Thromb Res 2011; 127 (06) 560-564
  • 47 Fabre JE, Nguyen M, Latour A. , et al. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 1999; 5 (10) 1199-1202
  • 48 Hamilton JR, Cornelissen I, Coughlin SR. Impaired hemostasis and protection against thrombosis in protease-activated receptor 4-deficient mice is due to lack of thrombin signaling in platelets. J Thromb Haemost 2004; 2 (08) 1429-1435
  • 49 Bender M, May F, Lorenz V. , et al. Combined in vivo depletion of glycoprotein VI and C-type lectin-like receptor 2 severely compromises hemostasis and abrogates arterial thrombosis in mice. Arterioscler Thromb Vasc Biol 2013; 33 (05) 926-934
  • 50 Hughes CE, Navarro-Núñez L, Finney BA, Mourão-Sá D, Pollitt AY, Watson SP. CLEC-2 is not required for platelet aggregation at arteriolar shear. J Thromb Haemost 2010; 8 (10) 2328-2332
  • 51 Ozaki Y, Suzuki-Inoue K, Inoue O. Novel interactions in platelet biology: CLEC-2/podoplanin and laminin/GPVI. J Thromb Haemost 2009; 7 (Suppl. 01) 191-194
  • 52 Inoue O, Suzuki-Inoue K, McCarty OJ. , et al. Laminin stimulates spreading of platelets through integrin alpha6beta1-dependent activation of GPVI. Blood 2006; 107 (04) 1405-1412
  • 53 Gros A, Syvannarath V, Lamrani L. , et al. Single platelets seal neutrophil-induced vascular breaches via GPVI during immune-complex-mediated inflammation in mice. Blood 2015; 126 (08) 1017-1026
  • 54 Herzog BH, Fu J, Wilson SJ. , et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 2013; 502 (7469): 105-109
  • 55 Asai J, Hirakawa S, Sakabe J. , et al. Platelets regulate the migration of keratinocytes via podoplanin/CLEC-2 signaling during cutaneous wound healing in mice. Am J Pathol 2016; 186 (01) 101-108
  • 56 Kurokawa T, Zheng YW, Ohkohchi N. Novel functions of platelets in the liver. J Gastroenterol Hepatol 2016; 31 (04) 745-751
  • 57 Kirschbaum M, Karimian G, Adelmeijer J, Giepmans BN, Porte RJ, Lisman T. Horizontal RNA transfer mediates platelet-induced hepatocyte proliferation. Blood 2015; 126 (06) 798-806
  • 58 Meyer J, Lejmi E, Fontana P, Morel P, Gonelle-Gispert C, Bühler L. A focus on the role of platelets in liver regeneration: do platelet-endothelial cell interactions initiate the regenerative process?. J Hepatol 2015; 63 (05) 1263-1271
  • 59 Kono H, Fujii H, Suzuki-Inoue K. , et al. The platelet-activating receptor C-type lectin receptor-2 plays an essential role in liver regeneration after partial hepatectomy in mice. J Thromb Haemost 2017; 15 (05) 998-1008
  • 60 Katagiri Y, Hayashi Y, Baba I, Suzuki H, Tanoue K, Yamazaki H. Characterization of platelet aggregation induced by the human melanoma cell line HMV-I: roles of heparin, plasma adhesive proteins, and tumor cell membrane proteins. Cancer Res 1991; 51 (04) 1286-1293
  • 61 Kitagawa H, Yamamoto N, Yamamoto K, Tanoue K, Kosaki G, Yamazaki H. Involvement of platelet membrane glycoprotein Ib and glycoprotein IIb/IIIa complex in thrombin-dependent and -independent platelet aggregations induced by tumor cells. Cancer Res 1989; 49 (03) 537-541
  • 62 Kato Y, Fujita N, Kunita A. , et al. Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol Chem 2003; 278 (51) 51599-51605
  • 63 Nieswandt B, Hafner M, Echtenacher B, Männel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 1999; 59 (06) 1295-1300
  • 64 Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 2005; 166 (03) 913-921
  • 65 Kato Y, Kaneko M, Sata M, Fujita N, Tsuruo T, Osawa M. Enhanced expression of Aggrus (T1alpha/podoplanin), a platelet-aggregation-inducing factor in lung squamous cell carcinoma. Tumour Biol 2005; 26 (04) 195-200
  • 66 Kato Y, Sasagawa I, Kaneko M, Osawa M, Fujita N, Tsuruo T. Aggrus: a diagnostic marker that distinguishes seminoma from embryonal carcinoma in testicular germ cell tumors. Oncogene 2004; 23 (52) 8552-8556
  • 67 Mishima K, Kato Y, Kaneko MK, Nishikawa R, Hirose T, Matsutani M. Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol 2006; 111 (05) 483-488
  • 68 Mishima K, Kato Y, Kaneko MK. , et al. Podoplanin expression in primary central nervous system germ cell tumors: a useful histological marker for the diagnosis of germinoma. Acta Neuropathol 2006; 111 (06) 563-568
  • 69 Kato Y, Kaneko MK, Kuno A. , et al. Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem Biophys Res Commun 2006; 349 (04) 1301-1307
  • 70 Yuan P, Temam S, El-Naggar A. , et al. Overexpression of podoplanin in oral cancer and its association with poor clinical outcome. Cancer 2006; 107 (03) 563-569
  • 71 Shirai T, Inoue O, Tamura S. , et al. C-type lectin-like receptor 2 promotes hematogenous tumor metastasis and prothrombotic state in tumor-bearing mice. J Thromb Haemost 2017; 15 (03) 513-525
  • 72 Kaneko MK, Yamada S, Nakamura T. , et al. Antitumor activity of chLpMab-2, a human-mouse chimeric cancer-specific antihuman podoplanin antibody, via antibody-dependent cellular cytotoxicity. Cancer Med 2017; 6 (04) 768-777
  • 73 Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 2007; 21 (02) 99-111
  • 74 Payne H, Ponomaryov T, Watson SP, Brill A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood 2017; 129 (14) 2013-2020
  • 75 Suzuki-Inoue K. CLEC-2/podoplanin and thromboinflammation. Blood 2017; 129 (14) 1896-1898
  • 76 Suzuki-Inoue K, Osada M, Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost 2017; 15 (02) 219-229
  • 77 Hitchcock JR, Cook CN, Bobat S. , et al. Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. J Clin Invest 2015; 125 (12) 4429-4446