J Reconstr Microsurg 2017; 33(09): 649-659
DOI: 10.1055/s-0037-1604437
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Repair of Large Segmental Bone Defect using Vascularized Small Corticocancellous Bone in Rabbit Femur

Jong Woo Kang
1   Department of Orthopaedic Surgery, Korea University Ansan Hospital, Ansan, The Republic of Korea
,
Dong Hun Suh
1   Department of Orthopaedic Surgery, Korea University Ansan Hospital, Ansan, The Republic of Korea
,
Jung Ho Park
1   Department of Orthopaedic Surgery, Korea University Ansan Hospital, Ansan, The Republic of Korea
,
Jong Hoon Park
2   Department of Orthopaedic Surgery, Korea University Anam Hospital, Seoul, The Republic of Korea
,
Soon Hyuck Lee
2   Department of Orthopaedic Surgery, Korea University Anam Hospital, Seoul, The Republic of Korea
,
Jong Woong Park
2   Department of Orthopaedic Surgery, Korea University Anam Hospital, Seoul, The Republic of Korea
› Author Affiliations
Further Information

Publication History

25 December 2016

18 June 2017

Publication Date:
02 August 2017 (online)

Abstract

Background Although free-vascularized long-bone transfer is useful for reconstruction of a large segmental bone defect, it is limited by availability of transplantable bone, meticulous microsurgical technique, and donor-site morbidities. Hence, easier, readily available, and safer surgical procedures are warranted. This study evaluated the effects of vascularized small corticocancellous bone grafting for reconstruction of a large segmental rabbit femur defect.

Methods A 1.5 cm defect was created in the femurs of 40 New Zealand white rabbits and divided into a control group (n = 10, bone defect without graft), group A (n = 10, bone defect filled with morselized autogenous bone), group B (n = 10, bone defect grafted with a vascularized small corticocancellous bone and morselized autogenous bone), and group C (n = 10, bone defect grafted with a vascularized small corticocancellous bone). Simple radiographs were taken postoperatively, and bone healing ability was scored using Taira's radiologic scale. Histologic examinations were scored using Emery's histologic scale. The expression of osteogenesis-related growth factors (BMP-2, -4, and -7, VEGF, and RANKL) was analyzed.

Results Radiologically, group B showed superior biological efficacy in bone formation and consolidation over the other groups. Histologically, the defect in group B was filled with more abundant mature bone than the other groups. Group B showed higher gene expression of BMP-2, -4, and -7, and VEGF.

Conclusions The grafting of the morselized autogenous bone (MSB) combined with the vascularized small corticocancellous bone is more effective than that of the MSB alone for repairing a large segmental bone defect.

 
  • References

  • 1 Rigal S, Merloz P, Le Nen D, Mathevon H, Masquelet AC. ; French Society of Orthopaedic Surgery and Traumatology (SoFCOT). Bone transport techniques in posttraumatic bone defects. Orthop Traumatol Surg Res 2012; 98 (01) 103-108
  • 2 DeCoster TA, Gehlert RJ, Mikola EA, Pirela-Cruz MA. Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg 2004; 12 (01) 28-38
  • 3 Ilizarov GA, Ledyaev VI. The replacement of long tubular bone defects by lengthening distraction osteotomy of one of the fragments. 1969. Clin Orthop Relat Res 1992; (280) 7-10
  • 4 Levin LS. Vascularized fibula graft for the traumatically induced long-bone defect. J Am Acad Orthop Surg 2006; 14 (10 Spec No.): S175-S176
  • 5 Azi ML, Teixeira AA, Cotias RB, Joeris A, Kfuri Jr M. Membrane induced riffonesis in the management of posttraumatic bone defects. J Orthop Trauma 2016; 30 (10) 545-550
  • 6 Estrella EP, Wang EH. A comparison of vascularized free fibular flaps and nonvascularized fibular grafts for reconstruction of long bone defects after tumor resection. J Reconstr Microsurg 2017; 33 (03) 194-205
  • 7 Repo JP, Sommarhem A, Roine RP, Sintonen H, Halonen T, Tukiainen E. Free vascularized fibular graft is reliable in upper extremity long-bone reconstruction with good long-term outcomes. J Reconstr Microsurg 2016; 32 (07) 513-519
  • 8 Taira H, Moreno J, Ripalda P, Forriol F. Radiological and histological analysis of cortical allografts: an experimental study in sheep femora. Arch Orthop Trauma Surg 2004; 124 (05) 320-325
  • 9 Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S. The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am 1994; 76 (04) 540-548
  • 10 Taylor GI, Miller GD, Ham FJ. The free vascularized bone graft. A clinical extension of microvascular techniques. Plast Reconstr Surg 1975; 55 (05) 533-544
  • 11 Yoshimura M, Shimamura K, Iwai Y, Yamauchi S, Ueno T. Free vascularized fibular transplant. A new method for monitoring circulation of the grafted fibula. J Bone Joint Surg Am 1983; 65 (09) 1295-1301
  • 12 Marenzana M, Arnett TR. The key role of the blood supply to bone. Bone Res 2013; 1 (03) 203-215
  • 13 Doi K, Sakai K. Vascularized periosteal bone graft from the supracondylar region of the femur. Microsurgery 1994; 23: 529-533
  • 14 Sakai K, Doi K, Kawai S. Free vascularized thin corticoperiosteal graft. Plast Reconstr Surg 1991; 87 (02) 290-298
  • 15 Sparks DS, Saleh DB, Rozen WM, Hutmacher DW, Schuetz MA, Wagels M. Vascularised bone transfer: history, blood supply and contemporary problems. J Plast Reconstr Aesthet Surg 2017; 70 (01) 1-11
  • 16 Siemssen SO, Kirkby B, O'Connor TP. Immediate reconstruction of a resected segment of the lower jaw, using a compound flap of clavicle and sternomastoid muscle. Plast Reconstr Surg 1978; 61 (05) 724-735
  • 17 Chen M, Yang C, Qiu Y, He D, Huang D, Wei W. Superior half of the sternoclavicular joint pedicled with the sternocleidomastoid muscle for reconstruction of the temporomandibular joint: a preliminary study with a simplified technique and expanded indications. Int J Oral Maxillofac Surg 2015; 44: 685-691
  • 18 Panje W, Cutting C. Trapezius osteomyocutaneous island flap for reconstruction of the anterior floor of the mouth and the mandible. Head Neck Surg 1980; 3 (01) 66-71
  • 19 Coleman III JJ, Sultan MR. The bipedicled osteocutaneous scapula flap: a new subscapular system free flap. Plast Reconstr Surg 1991; 87 (04) 682-692
  • 20 Teot L, Souyris F, Bosse JP. Pedicle scapular apophysis transplantation in congenital limb malformations. Ann Plast Surg 1992; 29: 332-340
  • 21 Vacher C. The osteo-muscular dorsal scapular (OMDS) flap. Anatomic basis of a new pedicled flap for mandibular reconstruction. Surg Radiol Anat 2008; 30 (03) 233-238
  • 22 Katsaros J, Schusterman M, Beppu M, Banis Jr JC, Acland RD. The lateral upper arm flap: anatomy and clinical applications. Ann Plast Surg 1984; 12 (06) 489-500
  • 23 Moshammer HE, Hellbom BA, Schwarzl FX, Haas FM, Pierer GR. Reconstruction of a complex defect on the foot with an osteotendofasciocutaneous lateral arm free flap. Case report. Scand J Plast Reconstr Surg Hand Surg 1997; 31 (03) 271-273
  • 24 Lovie MJ, Duncan GM, Glasson DW. The ulnar artery forearm free flap. Br J Plast Surg 1984; 37 (04) 486-492
  • 25 Costa H, Smith R, McGrouther DA. Thumb reconstruction by the posterior interosseous osteocutaneous flap. Br J Plast Surg 1988; 41 (03) 228-233
  • 26 Biemer E, Stock W. Total thumb reconstruction: a one-stage reconstruction using an osteo-cutaneous forearm flap. Br J Plast Surg 1983; 36 (01) 52-55
  • 27 Chacha PB. Vascularised pedicular bone grafts. Int Orthop 1984; 8 (02) 117-138
  • 28 Kuhlmann JN, Mimoun M, Boabighi A, Baux S. Vascularized bone graft pedicled on the volar carpal artery for non-union of the scaphoid. J Hand Surg [Br] 1987; 12 (02) 203-210
  • 29 Zaidemberg C, Siebert JW, Angrigiani C. A new vascularized bone graft for scaphoid nonunion. J Hand Surg Am 1991; 16 (03) 474-478
  • 30 Moran SL, Cooney WP, Berger RA, Bishop AT, Shin AY. The use of the 4 + 5 extensor compartmental vascularized bone graft for the treatment of Kienböck's disease. J Hand Surg Am 2005; 30 (01) 50-58
  • 31 Ishii H, Tatebe M, Hirata H. Distal radius joint surface reconstruction using a pedicle pisiform osteochondral Transfer. J Hand Surg Am 2015; 40 (10) 2075-2080
  • 32 Judet R, Roy-Camille R, Guillamon JL. Traitement de la pseudarthrose du scaphoide carpien par le riffon pedicule. Rev Chir Orthop Reparatrice Appar Mot 1972; 58: 699-705
  • 33 Rozen WM, Niumsawatt V, Ross R, Leong JC, Ek EW. The vascular basis of the hemi-hamate osteochondral free flap. Part 1: vascular anatomy and clinical correlation. Surg Radiol Anat 2013; 35 (07) 585-594
  • 34 Bertelli JA, Tacca CP, Rost JR. Thumb metacarpal vascularized bone graft in long-standing scaphoid nonunion—a useful graft via dorsal or palmar approach: a cohort study of 24 patients. J Hand Surg Am 2004; 29 (06) 1089-1097
  • 35 Brunelli F, Mathoulin C, Saffar P. Description d'un riffon osseux vascularisé prélevé au niveau de la tête du deuxième métacarpien. Ann Chir Main Memb Super 1992; 11 (01) 40-45
  • 36 Santa-Comba A, Amarante J, Silva A, Rodrigues J. Reverse dorsal metacarpal osteocutaneous flap. Br J Plast Surg 1997; 50 (07) 555-558
  • 37 Verolino P, Casoli V, Kostopoulos E. , et al. Second to third phalanx vascularized bone transfer. Plast Reconstr Surg 2006; 117 (01) 1e-5e
  • 38 Taylor GI, Townsend P, Corlett R. Superiority of the deep circumflex iliac vessels as the supply for free groin flaps. Clinical work. Plast Reconstr Surg 1979; 64 (06) 745-759
  • 39 Baker SR. Reconstruction of mandibular defects with the revascularized free tensor fascia lata osteomyocutaneous flap. Arch Otolaryngol 1981; 107 (07) 414-418
  • 40 Vaishya R, Agarwal AK, Gupta N, Vijay V. Sartorius muscle pedicle iliac bone graft for the treatment of avascular necrosis of femur head. J Hip Preserv Surg 2016; 25 (03) 215-222
  • 41 Huang GK, Hu RQ, Miao H, Yin ZY, Lan TD, Pan GP. Microvascular free transfer of iliac bone based on the deep superior branches of the superior gluteal vessels. Plast Reconstr Surg 1985; 75 (01) 68-74
  • 42 Zhao JT. Free iliac skin flap transplantation by anastomosing the fourth lumbar blood vessel. Plast Reconstr Surg 1986; 77 (05) 836-842
  • 43 Curran JP, McGaw WH. Posterolateral spinal fusion with pedicle grafts. Clin Orthop Relat Res 1968; 59 (59) 125-129
  • 44 Meyers MH, Harvey Jr JP, Moore TM. Treatment of displaced subcapital and transcervical fractures of the femoral neck by muscle-pedicle-bone graft and internal fixation. A preliminary report on one hundred and fifty cases. J Bone Joint Surg Am 1973; 55 (02) 257-274
  • 45 Hertel R, Masquelet AC. The reverse flow medial knee osteoperiosteal flap for skeletal reconstruction of the leg. Description and anatomical basis. Surg Radiol Anat 1989; 11 (04) 257-262
  • 46 Masquelet AC, Nordin JY, Guinot A. Vascularized transfer of the adductor magnus tendon and its osseous insertion: a preliminary report. J Reconstr Microsurg 1985; 1 (03) 169-176
  • 47 Acartürk TO. Femur-vastus intermedius-anterolateral thigh osteomyocutaneous composite chimeric free flap: a new free flap for the reconstruction of complex wounds. J Reconstr Microsurg 2011; 27 (03) 187-194
  • 48 Pho RW, Patterson MH, Satku K. A gastrocnemius-pedicled femoral bone graft in resection arthrodesis at the knee. J Bone Joint Surg Br 1988; 70 (03) 354-357
  • 49 Tsai TM, Ludwig L, Tonkin M. Vascularized fibular epiphyseal transfer. A clinical study. Clin Orthop Relat Res 1986; (210) 228-234
  • 50 Schmidt AB, Giessler GA. The muscular and the new osteomuscular composite peroneus brevis flap: experiences from 109 cases. Plast Reconstr Surg 2010; 126 (03) 924-932
  • 51 Januszkiewicz JS, Mehrotra ON, Brown GE. Calcaneal fillet flap: a new osteocutaneous free tissue transfer for emergency salvage of traumatic below-knee amputation stumps. Plast Reconstr Surg 1996; 98 (03) 538-541
  • 52 McFadden JA. Vascularized partial first metatarsal transfer for the treatment of phalangeal osteomyelitis. J Reconstr Microsurg 1998; 14 (05) 309-312
  • 53 MacLeod AM, O'Brien BM, Morrison WA. Microvascular techniques in reconstruction following major resections for cancer of the head and neck. Aust N Z J Surg 1979; 49 (06) 648-653
  • 54 Concannon MJ, Boschert MT, Puckett CL. Bone induction using demineralized bone in the rabbit femur: a long-term study. Plast Reconstr Surg 1997; 99 (07) 1983-1988
  • 55 Guse RJ, Connolly JF, Alberts R, Lippiello L. Effect of aging on tensile mechanical properties of the rabbit distal femoral growth plate. J Orthop Res 1989; 7 (05) 667-673
  • 56 Van Gerven DP. The contribution of size and shape variation to patterns of sexual dimorphism of the human femur. Am J Phys Anthropol 1972; 37 (01) 49-60
  • 57 Bogin B, Varela-Silva MI. Leg length, body proportion, and health: a review with a note on beauty. Int J Environ Res Public Health 2010; 7 (03) 1047-1075
  • 58 Sakou T. Bone morphogenetic proteins: from basic studies to clinical approaches. Bone 1998; 22 (06) 591-603
  • 59 Kagiwada H, Yashiki T, Ohshima A, Tadokoro M, Nagaya N, Ohgushi H. Human mesenchymal stem cells as a stable source of VEGF-producing cells. J Tissue Eng Regen Med 2008; 2 (04) 184-189
  • 60 Udagawa N, Takahashi N, Jimi E. , et al. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 1999; 25 (05) 517-523
  • 61 Ito H, Koefoed M, Tiyapatanaputi P. , et al. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med 2005; 11 (03) 291-297
  • 62 Szczęsny G. Fracture healing and its disturbances. A literature review. Ortop Traumatol Rehabil 2015; 17 (05) 437-454
  • 63 Tsagarakis M, Spyropoulou GA, Lykoudis E. , et al. The use of vascularized fascia as carrier in cases of prelaminated fasciocartilaginous and osseofascial flaps. J Reconstr Microsurg 2016; 32 (04) 301-308
  • 64 Ersoy B, Bayramiçli M, Ercan F, Şirinoğlu H, Turan P, Numanoğlu A. Comparison of bone prefabrication with vascularized periosteal flaps, hydroxyapatite, and bioactive glass in rats. J Reconstr Microsurg 2015; 31 (04) 291-299
  • 65 Fei W, Danmou X, Dong R. , et al. Free vascularized medial femoral condyle corticocancellous flap for treatment of challenging upper extremity nonunions. J Reconstr Microsurg 2015; 31 (02) 124-131
  • 66 Higgins JP, Bürger HK. Osteochondral flaps from the distal femur: expanding applications, harvest sites, and indications. J Reconstr Microsurg 2014; 30 (07) 483-490
  • 67 Giessler GA, Zobitz M, Friedrich PF, Bishop AT. Transplantation of a vascularized rabbit femoral diaphyseal segment: mechanical and histologic properties of a new living bone transplantation model. Microsurgery 2008; 28 (04) 291-299