Semin Thromb Hemost 2018; 44(02): 151-158
DOI: 10.1055/s-0037-1607431
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Factor VII-Activating Protease: Hemostatic Protein or Immune Regulator?

Sacha Zeerleder
1   Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
2   Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
24. November 2017 (online)

Abstract

Factor VII (FVII)-activating protease (FSAP) is a serine protease in plasma, which was initially described to play a role in coagulation by activation of FVII, independent of tissue factor, and in fibrinolysis by cleavage of single-chain urokinase. Recent studies, however, suggest that FSAP-mediated FVII cleavage is negligible and that FSAP may exert procoagulant functions via cleavage of tissue factor pathway inhibitor. Meanwhile, many substrates of FSAP have been identified, such as platelet-derived growth factor, basic fibroblast growth factor/epidermal growth factor, histones, and high-molecular-weight kininogen. FSAP has also shown to induce DNA released from dead cells. Given its propensity for autoproteolysis and degradation, studies on the activation and regulation of FSAP are difficult to perform. Recent animal studies suggest a role of FSAP in the pathogenesis of arteriosclerosis, vascular integrity and probably also in the regulation of coagulation initiation. This review will focus on the biochemical properties of FSAP, regulation of FSAP activation, and finally its role in vascular disease and acute systemic inflammatory diseases, such as sepsis.

 
  • References

  • 1 Choi-Miura NH, Tobe T, Sumiya J. , et al. Purification and characterization of a novel hyaluronan-binding protein (PHBP) from human plasma: it has three EGF, a kringle and a serine protease domain, similar to hepatocyte growth factor activator. J Biochem 1996; 119 (06) 1157-1165
  • 2 Hunfeld A, Etscheid M, König H, Seitz R, Dodt J. Detection of a novel plasma serine protease during purification of vitamin K-dependent coagulation factors. FEBS Lett 1999; 456 (02) 290-294
  • 3 Subramaniam S, Thielmann I, Morowski M. , et al. Defective thrombus formation in mice lacking endogenous factor VII activating protease (FSAP). Thromb Haemost 2015; 113 (04) 870-880
  • 4 Römisch J, Feussner A, Vermöhlen S, Stöhr HA. A protease isolated from human plasma activating factor VII independent of tissue factor. Blood Coagul Fibrinolysis 1999; 10 (08) 471-479
  • 5 Kanse SM, Declerck PJ, Ruf W, Broze G, Etscheid M. Factor VII-activating protease promotes the proteolysis and inhibition of tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 2012; 32 (02) 427-433
  • 6 Stavenuiter F, Dienava-Verdoold I, Boon-Spijker MG, Brinkman HJ, Meijer AB, Mertens K. Factor seven activating protease (FSAP): does it activate factor VII?. J Thromb Haemost 2012; 10 (05) 859-866
  • 7 Etscheid M, Hunfeld A, König H, Seitz R, Dodt J. Activation of proPHBSP, the zymogen of a plasma hyaluronan binding serine protease, by an intermolecular autocatalytic mechanism. Biol Chem 2000; 381 (12) 1223-1231
  • 8 Kannemeier C, Feussner A, Stöhr HA, Weisse J, Preissner KT, Römisch J. Factor VII and single-chain plasminogen activator-activating protease: activation and autoactivation of the proenzyme. Eur J Biochem 2001; 268 (13) 3789-3796
  • 9 Zeerleder S, Zwart B, te Velthuis H. , et al. Nucleosome-releasing factor: a new role for factor VII-activating protease (FSAP). FASEB J 2008; 22 (12) 4077-4084
  • 10 Stephan F, Marsman G, Bakker LM. , et al. Cooperation of factor VII-activating protease and serum DNase I in the release of nucleosomes from necrotic cells. Arthritis Rheumatol 2014; 66 (03) 686-693
  • 11 Naudin C, Burillo E, Blankenberg S, Butler L, Renne T. Factor XII contact activation. Semin Thromb Hemost 2017; 43 (08) 814-826
  • 12 Kleinschnitz C, Stoll G, Bendszus M. , et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med 2006; 203 (03) 513-518
  • 13 Etscheid M, Beer N, Fink E, Seitz R, Johannes D. The hyaluronan-binding serine protease from human plasma cleaves HMW and LMW kininogen and releases bradykinin. Biol Chem 2002; 383 (10) 1633-1643
  • 14 Etscheid M, Beer N, Kress JA, Seitz R, Dodt J. Inhibition of bFGF/EGF-dependent endothelial cell proliferation by the hyaluronan-binding protease from human plasma. Eur J Cell Biol 2004; 82 (12) 597-604
  • 15 Kannemeier C, Al-Fakhri N, Preissner KT, Kanse SM. Factor VII-activating protease (FSAP) inhibits growth factor-mediated cell proliferation and migration of vascular smooth muscle cells. FASEB J 2004; 18 (06) 728-730
  • 16 Roemisch J, Feussner A, Nerlich C, Stoehr HA, Weimer T. The frequent Marburg I polymorphism impairs the pro-urokinase activating potency of the factor VII activating protease (FSAP). Blood Coagul Fibrinolysis 2002; 13 (05) 433-441
  • 17 Römisch J, Feussner A, Stöhr HA. Quantitation of the factor VII- and single-chain plasminogen activator-activating protease in plasmas of healthy subjects. Blood Coagul Fibrinolysis 2001; 12 (05) 375-383
  • 18 Borkham-Kamphorst E, Zimmermann HW, Gassler N. , et al. Factor VII activating protease (FSAP) exerts anti-inflammatory and anti-fibrotic effects in liver fibrosis in mice and men. J Hepatol 2013; 58 (01) 104-111
  • 19 Bustamante A, Díaz-Fernández B, Giralt D. , et al. Factor seven activating protease (FSAP) predicts response to intravenous thrombolysis in acute ischemic stroke. Int J Stroke 2016; 11 (06) 646-655
  • 20 Hashimoto K, Tobe T, Sumiya J. , et al. Cloning of the cDNA for a mouse homologue of human PHBP: a novel hyaluronan-binding protein. Biol Pharm Bull 1997; 20 (11) 1127-1130
  • 21 Sumiya J, Asakawa S, Tobe T. , et al. Isolation and characterization of the plasma hyaluronan-binding protein (PHBP) gene (HABP2). J Biochem 1997; 122 (05) 983-990
  • 22 Römisch J, Vermöhlen S, Feussner A, Stöhr H. The FVII activating protease cleaves single-chain plasminogen activators. Haemostasis 1999; 29 (05) 292-299
  • 23 Muhl L, Galuska SP, Oörni K. , et al. High negative charge-to-size ratio in polyphosphates and heparin regulates factor VII-activating protease. FEBS J 2009; 276 (17) 4828-4839
  • 24 Altincicek B, Shibamiya A, Trusheim H. , et al. A positively charged cluster in the epidermal growth factor-like domain of Factor VII-activating protease (FSAP) is essential for polyanion binding. Biochem J 2006; 394 (Pt 3): 687-692
  • 25 Nakazawa F, Kannemeier C, Shibamiya A. , et al. Extracellular RNA is a natural cofactor for the (auto-)activation of Factor VII-activating protease (FSAP). Biochem J 2005; 385 (Pt 3): 831-838
  • 26 Yamamichi S, Nishitani M, Nishimura N, Matsushita Y, Hasumi K. Polyamine-promoted autoactivation of plasma hyaluronan-binding protein. J Thromb Haemost 2010; 8 (03) 559-566
  • 27 Yamamichi S, Fujiwara Y, Kikuchi T, Nishitani M, Matsushita Y, Hasumi K. Extracellular histone induces plasma hyaluronan-binding protein (factor VII activating protease) activation in vivo. Biochem Biophys Res Commun 2011; 409 (03) 483-488
  • 28 Stephan F, Hazelzet JA, Bulder I. , et al. Activation of factor VII-activating protease in human inflammation: a sensor for cell death. Crit Care 2011; 15 (02) R110
  • 29 Choi-Miura NH, Saito K, Takahashi K, Yoda M, Tomita M. Regulation mechanism of the serine protease activity of plasma hyaluronan binding protein. Biol Pharm Bull 2001; 24 (03) 221-225
  • 30 Römisch J. Factor VII activating protease (FSAP): a novel protease in hemostasis. Biol Chem 2002; 383 (7-8): 1119-1124
  • 31 Wygrecka M, Markart P, Fink L, Guenther A, Preissner KT. Raised protein levels and altered cellular expression of factor VII activating protease (FSAP) in the lungs of patients with acute respiratory distress syndrome (ARDS). Thorax 2007; 62 (10) 880-888
  • 32 Stephan F, Bulder I, Luken BM, Hazelzet J, Wuillemin WA, Zeerleder S. Complexes of factor VII-activating protease with plasminogen activator inhibitor-1 in human sepsis. Thromb Haemost 2014; 112 (01) 219-221
  • 33 Stephan F, Dienava-Verdoold I, Bulder I. , et al. Tissue factor pathway inhibitor is an inhibitor of factor VII-activating protease. J Thromb Haemost 2012; 10 (06) 1165-1171
  • 34 Etscheid M, Muhl L, Pons D, Jukema JW, König H, Kanse SM. The Marburg I polymorphism of factor VII activating protease is associated with low proteolytic and low pro-coagulant activity. Thromb Res 2012; 130 (06) 935-941
  • 35 Hanson E, Kanse SM, Joshi A. , et al. Plasma factor VII-activating protease antigen levels and activity are increased in ischemic stroke. J Thromb Haemost 2012; 10 (05) 848-856
  • 36 Joshi AU, Orset C, Engelhardt B. , et al. Deficiency of factor VII activating protease alters the outcome of ischemic stroke in mice. Eur J Neurosci 2015; 41 (07) 965-975
  • 37 Raines EW. PDGF and cardiovascular disease. Cytokine Growth Factor Rev 2004; 15 (04) 237-254
  • 38 Shibamiya A, Muhl L, Tannert-Otto S, Preissner KT, Kanse SM. Nucleic acids potentiate Factor VII-activating protease (FSAP)-mediated cleavage of platelet-derived growth factor-BB and inhibition of vascular smooth muscle cell proliferation. Biochem J 2007; 404 (01) 45-50
  • 39 Sedding D, Daniel JM, Muhl L. , et al. The G534E polymorphism of the gene encoding the factor VII-activating protease is associated with cardiovascular risk due to increased neointima formation. J Exp Med 2006; 203 (13) 2801-2807
  • 40 Ahmad-Nejad P, Dempfle CE, Weiss C, Bugert P, Borggrefe M, Neumaier M. The G534E-polymorphism of the gene encoding the factor VII-activating protease is a risk factor for venous thrombosis and recurrent events. Thromb Res 2012; 130 (03) 441-444
  • 41 Ireland H, Miller GJ, Webb KE, Cooper JA, Humphries SE. The factor VII activating protease G511E (Marburg) variant and cardiovascular risk. Thromb Haemost 2004; 92 (05) 986-992
  • 42 Trompet S, Pons D, Kanse SM. , et al. Factor VII activating protease polymorphism (G534E) is associated with increased risk for stroke and mortality. Stroke Res Treat 2011; 2011: 424759
  • 43 Willeit J, Kiechl S, Weimer T. , et al. Marburg I polymorphism of factor VII--activating protease: a prominent risk predictor of carotid stenosis. Circulation 2003; 107 (05) 667-670
  • 44 Parahuleva MS, Kanse SM, Parviz B. , et al. Factor seven activating protease (FSAP) expression in human monocytes and accumulation in unstable coronary atherosclerotic plaques. Atherosclerosis 2008; 196 (01) 164-171
  • 45 Parahuleva MS, Maj R, Hölschermann H. , et al. Regulation of monocyte/macrophage function by factor VII activating protease (FSAP). Atherosclerosis 2013; 230 (02) 365-372
  • 46 Weisbach V, Ruppel R, Eckstein R. The Marburg I polymorphism of factor VII-activating protease and the risk of venous thromboembolism. Thromb Haemost 2007; 97 (05) 870-872
  • 47 van Minkelen R, de Visser MC, Vos HL, Bertina RM, Rosendaal FR. The Marburg I polymorphism of factor VII-activating protease is not associated with venous thrombosis. Blood 2005; 105 (12) 4898 , author reply 4899
  • 48 Sidelmann JJ, Vitzthum F, Funding E, Münster AM, Gram J, Jespersen J. Factor VII-activating protease in patients with acute deep venous thrombosis. Thromb Res 2008; 122 (06) 848-853
  • 49 Pecheniuk NM, Elias DJ, Xu X, Griffin JH. Failure to validate association of gene polymorphisms in EPCR, PAR-1, FSAP and protein S Tokushima with venous thromboembolism among Californians of European ancestry. Thromb Haemost 2008; 99 (02) 453-455
  • 50 Hoppe B, Tolou F, Radtke H, Kiesewetter H, Dörner T, Salama A. Marburg I polymorphism of factor VII-activating protease is associated with idiopathic venous thromboembolism. Blood 2005; 105 (04) 1549-1551
  • 51 Hoppe B, Dörner T, Kiesewetter H, Salama A. Marburg I polymorphism of factor VII-activating protease and risk of recurrent venous thromboembolism. Thromb Haemost 2006; 95 (05) 907-908 , author reply 908
  • 52 Gulesserian T, Hron G, Endler G, Eichinger S, Wagner O, Kyrle PA. Marburg I polymorphism of factor VII-activating protease and risk of recurrent venous thromboembolism. Thromb Haemost 2006; 95 (01) 65-67
  • 53 Franchi F, Martinelli I, Biguzzi E, Bucciarelli P, Mannucci PM. Marburg I polymorphism of factor VII-activating protease and risk of venous thromboembolism. Blood 2006; 107 (04) 1731
  • 54 van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 2017; 17 (07) 407-420
  • 55 Zeerleder S, Hack CE, Wuillemin WA. Disseminated intravascular coagulation in sepsis. Chest 2005; 128 (04) 2864-2875
  • 56 Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 2006; 6 (11) 813-822
  • 57 Papathanassoglou ED, Moynihan JA, Ackerman MH. Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med 2000; 28 (02) 537-549
  • 58 Marsman G, Zeerleder S, Luken BM. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis 2016; 7 (12) e2518
  • 59 de Jong HK, Koh GC, Bulder I, Stephan F, Wiersinga WJ, Zeerleder SS. Diabetes-independent increase of factor VII-activating protease activation in patients with Gram-negative sepsis (melioidosis). J Thromb Haemost 2015; 13 (01) 41-46
  • 60 Huson MA, Zeerleder SS, van Mierlo G, Wouters D, Grobusch MP, van der Poll T. HIV infection is associated with elevated nucleosomes in asymptomatic patients and during sepsis or malaria. J Infect 2015; 71 (02) 266-269
  • 61 Zeerleder S, Stephan F, Emonts M. , et al. Circulating nucleosomes and severity of illness in children suffering from meningococcal sepsis treated with protein C. Crit Care Med 2012; 40 (12) 3224-3229
  • 62 Zeerleder S, Zwart B, Wuillemin WA. , et al. Elevated nucleosome levels in systemic inflammation and sepsis. Crit Care Med 2003; 31 (07) 1947-1951
  • 63 Paris DH, Stephan F, Bulder I. , et al. Increased nucleosomes and neutrophil activation link to disease progression in patients with scrub typhus but not murine typhus in Laos. PLoS Negl Trop Dis 2015; 9 (08) e0003990
  • 64 Xu J, Zhang X, Pelayo R. , et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15 (11) 1318-1321
  • 65 Huang H, Evankovich J, Yan W. , et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology 2011; 54 (03) 999-1008
  • 66 Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol 2011; 187 (05) 2626-2631
  • 67 Zeerleder S, Zwart B, te Velthuis H. , et al. A plasma nucleosome releasing factor (NRF) with serine protease activity is instrumental in removal of nucleosomes from secondary necrotic cells. FEBS Lett 2007; 581 (28) 5382-5388
  • 68 Marsman G, Stephan F, de Leeuw K. , et al. FSAP-mediated nucleosome release from late apoptotic cells is inhibited by autoantibodies present in SLE. Eur J Immunol 2016; 46 (03) 762-771
  • 69 Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 2007; 7 (10) 803-815
  • 70 Hack CE, Zeerleder S. The endothelium in sepsis: source of and a target for inflammation. Crit Care Med 2001; 29 (7, Suppl): S21-S27
  • 71 Henrich M, Gruss M, Weigand MA. Sepsis-induced degradation of endothelial glycocalix. Sci World J 2010; 10: 917-923
  • 72 Barratt-Due A, Johansen HT, Sokolov A. , et al. The role of bradykinin and the effect of the bradykinin receptor antagonist icatibant in porcine sepsis. Shock 2011; 36 (05) 517-523
  • 73 Zeerleder S, Levi M. Hereditary and acquired C1-inhibitor-dependent angioedema: from pathophysiology to treatment. Ann Med 2016; 48 (04) 256-267
  • 74 Kress JA, Seitz R, Dodt J, Etscheid M. Induction of intracellular signalling in human endothelial cells by the hyaluronan-binding protease involves two distinct pathways. Biol Chem 2006; 387 (09) 1275-1283
  • 75 Pixley RA, De La Cadena R, Page JD. , et al. The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia. In vivo use of a monoclonal anti-factor XII antibody to block contact activation in baboons. J Clin Invest 1993; 91 (01) 61-68
  • 76 Caliezi C, Wuillemin WA, Zeerleder S, Redondo M, Eisele B, Hack CE. C1-Esterase inhibitor: an anti-inflammatory agent and its potential use in the treatment of diseases other than hereditary angioedema. Pharmacol Rev 2000; 52 (01) 91-112
  • 77 Kanse SM, Gallenmueller A, Zeerleder S. , et al. Factor VII-activating protease is activated in multiple trauma patients and generates anaphylatoxin C5a. J Immunol 2012; 188 (06) 2858-2865
  • 78 Mambetsariev N, Mirzapoiazova T, Mambetsariev B. , et al. Hyaluronic Acid binding protein 2 is a novel regulator of vascular integrity. Arterioscler Thromb Vasc Biol 2010; 30 (03) 483-490
  • 79 Stephan F, Aarden LA, Zeerleder S. FSAP, a new player in inflammation?. Hamostaseologie 2012; 32 (01) 51-55