CC BY-NC-ND 4.0 · Joints 2017; 05(04): 229-236
DOI: 10.1055/s-0037-1608666
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Postarthroscopy Osteonecrosis of the Knee: Current Concepts

Francesco Di Caprio
1   Operating Unit of Orthopedics and Traumatology, AUSL of Romagna, Ceccarini Hospital, Riccione, Italy
,
Renato Meringolo
1   Operating Unit of Orthopedics and Traumatology, AUSL of Romagna, Ceccarini Hospital, Riccione, Italy
,
Maria Adiletta Navarra
1   Operating Unit of Orthopedics and Traumatology, AUSL of Romagna, Ceccarini Hospital, Riccione, Italy
,
Massimiliano Mosca
2   Second Orthopedics and Traumatology Clinic, Rizzoli Orthopedic Institute, Bologna, Italy
,
Lorenzo Ponziani
1   Operating Unit of Orthopedics and Traumatology, AUSL of Romagna, Ceccarini Hospital, Riccione, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
06 November 2017 (online)

Abstract

Knee osteonecrosis is a severe disease rapidly leading to end-stage osteoarthritis, which was classified into three categories: spontaneous, secondary, and postarthroscopy. To understand postarthroscopy osteonecrosis of the knee, all the three types of knee osteonecrosis have to be deepened. This article reviewed spontaneous and secondary osteonecroses of the knee, with special focus upon postarthroscopy osteonecrosis, which is a rare form, affecting patients operated for arthroscopic knee surgery, most commonly for meniscectomy. Due to its rarity, patients and surgeons are often unprepared for this complication. A correct diagnosis is essential for appropriate treatment, and also to determine if a preexisting osteonecrosis was present, avoiding medicolegal sequelae, although many authors agree that osteonecrosis (both spontaneous and postarthroscopy) represent unpreventable and unpredictable conditions. In spontaneous osteonecrosis, the treatment is defined according to the size and the degree of the lesion, whereas in postarthroscopy osteonecrosis, the size of the lesion has no prognostic value, and therefore, the choice of the correct treatment is based more on the timing of the diagnosis. A diagnostic and therapeutic algorithm was outlined on the basis of the actual knowledge.

 
  • References

  • 1 Ahlbäck S, Bauer GC, Bohne WH. Spontaneous osteonecrosis of the knee. Arthritis Rheum 1968; 11 (06) 705-733
  • 2 Mont MA, Baumgarten KM, Rifai A, Bluemke DA, Jones LC, Hungerford DS. Atraumatic osteonecrosis of the knee. J Bone Joint Surg Am 2000; 82 (09) 1279-1290
  • 3 Pape D, Seil R, Fritsch E, Rupp S, Kohn D. Prevalence of spontaneous osteonecrosis of the medial femoral condyle in elderly patients. Knee Surg Sports Traumatol Arthrosc 2002; 10 (04) 233-240
  • 4 Mears SC, McCarthy EF, Jones LC, Hungerford DS, Mont MA. Characterization and pathological characteristics of spontaneous osteonecrosis of the knee. Iowa Orthop J 2009; 29: 38-42
  • 5 al-Rowaih A, Björkengren A, Egund N, Lindstrand A, Wingstrand H, Thorngren KG. Size of osteonecrosis of the knee. Clin Orthop Relat Res 1993; (287) 68-75
  • 6 Mont MA, Marker DR, Zywiel MG, Carrino JA. Osteonecrosis of the knee and related conditions. J Am Acad Orthop Surg 2011; 19 (08) 482-494
  • 7 Reddy AS, Frederick RW. Evaluation of the intraosseous and extraosseous blood supply to the distal femoral condyles. Am J Sports Med 1998; 26 (03) 415-419
  • 8 Yamamoto T, Bullough PG. Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am 2000; 82 (06) 858-866
  • 9 Akamatsu Y, Mitsugi N, Hayashi T, Kobayashi H, Saito T. Low bone mineral density is associated with the onset of spontaneous osteonecrosis of the knee. Acta Orthop 2012; 83 (03) 249-255
  • 10 Norman A, Baker ND. Spontaneous osteonecrosis of the knee and medial meniscal tears. Radiology 1978; 129 (03) 653-656
  • 11 Muscolo DL, Costa-Paz M, Ayerza M, Makino A. Medial meniscal tears and spontaneous osteonecrosis of the knee. Arthroscopy 2006; 22 (04) 457-460
  • 12 Robertson DD, Armfield DR, Towers JD, Irrgang JJ, Maloney WJ, Harner CD. Meniscal root injury and spontaneous osteonecrosis of the knee: an observation. J Bone Joint Surg Br 2009; 91 (02) 190-195
  • 13 Houpt JB, Pritzker KP, Alpert B, Greyson ND, Gross AE. Natural history of spontaneous osteonecrosis of the knee (SONK): a review. Semin Arthritis Rheum 1983; 13 (02) 212-227
  • 14 Fotiadou A, Karantanas A. Acute nontraumatic adult knee pain: the role of MR imaging. Radiol Med (Torino) 2009; 114 (03) 437-447
  • 15 Koshino T, Okamoto R, Takamura K, Tsuchiya K. Arthroscopy in spontaneous osteonecrosis of the knee. Orthop Clin North Am 1979; 10 (03) 609-618
  • 16 Ficat RP. Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment. J Bone Joint Surg Br 1985; 67 (01) 3-9
  • 17 Aglietti P, Insall JN, Buzzi R, Deschamps G. Idiopathic osteonecrosis of the knee. Aetiology, prognosis and treatment. J Bone Joint Surg Br 1983; 65 (05) 588-597
  • 18 Brahme SK, Fox JM, Ferkel RD, Friedman MJ, Flannigan BD, Resnick DL. Osteonecrosis of the knee after arthroscopic surgery: diagnosis with MR imaging. Radiology 1991; 178 (03) 851-853
  • 19 Johnson TC, Evans JA, Gilley JA, DeLee JC. Osteonecrosis of the knee after arthroscopic surgery for meniscal tears and chondral lesions. Arthroscopy 2000; 16 (03) 254-261
  • 20 Faletti C, Robba T, de Petro P. Postmeniscectomy osteonecrosis. Arthroscopy 2002; 18 (01) 91-94
  • 21 Kobayashi Y, Kimura M, Higuchi H, Terauchi M, Shirakura K, Takagishi K. Juxta-articular bone marrow signal changes on magnetic resonance imaging following arthroscopic meniscectomy. Arthroscopy 2002; 18 (03) 238-245
  • 22 Patel DV, Breazeale NM, Behr CT, Warren RF, Wickiewicz TL, O'Brien SJ. Osteonecrosis of the knee: current clinical concepts. Knee Surg Sports Traumatol Arthrosc 1998; 6 (01) 2-11
  • 23 Pape D, Seil R, Anagnostakos K, Kohn D. Postarthroscopic osteonecrosis of the knee. Arthroscopy 2007; 23 (04) 428-438
  • 24 Santori N, Condello V, Adriani E, Mariani PP. Osteonecrosis after arthroscopic medial meniscectomy. Arthroscopy 1995; 11 (02) 220-224
  • 25 Pruès-Latour V, Bonvin JC, Fritschy D. Nine cases of osteonecrosis in elderly patients following arthroscopic meniscectomy. Knee Surg Sports Traumatol Arthrosc 1998; 6 (03) 142-147
  • 26 Yao L, Stanczak J, Boutin RD. Presumptive subarticular stress reactions of the knee: MRI detection and association with meniscal tear patterns. Skeletal Radiol 2004; 33 (05) 260-264
  • 27 Fukuda Y, Takai S, Yoshino N. , et al. Impact load transmission of the knee joint-influence of leg alignment and the role of meniscus and articular cartilage. Clin Biomech (Bristol, Avon) 2000; 15 (07) 516-521
  • 28 Jones RS, Keene GC, Learmonth DJ. , et al. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin Biomech (Bristol, Avon) 1996; 11 (05) 295-300
  • 29 Rozbruch SR, Wickiewicz TL, DiCarlo EF, Potter HG. Osteonecrosis of the knee following arthroscopic laser meniscectomy. Arthroscopy 1996; 12 (02) 245-250
  • 30 Strauss EJ, Kang R, Bush-Joseph C, Bach Jr BR. The diagnosis and management of spontaneous and post-arthroscopy osteonecrosis of the knee. Bull NYU Hosp Jt Dis 2011; 69 (04) 320-330
  • 31 MacDessi SJ, Brophy RH, Bullough PG, Windsor RE, Sculco TP. Subchondral fracture following arthroscopic knee surgery. A series of eight cases. J Bone Joint Surg Am 2008; 90 (05) 1007-1012
  • 32 Hall FM. Osteonecrosis in the postoperative knee. Radiology 2005; 236 (01) 370-371 , author reply 371
  • 33 Bauer HC, Persson PE, Nilsson OS. Tears of the medial meniscus associated with increased radionuclide activity of the proximal tibia. Report of three cases. Int Orthop 1989; 13 (02) 153-155
  • 34 Bonutti PM, Seyler TM, Delanois RE, McMahon M, McCarthy JC, Mont MA. Osteonecrosis of the knee after laser or radiofrequency-assisted arthroscopy: treatment with minimally invasive knee arthroplasty. J Bone Joint Surg Am 2006; 88 (Suppl. 03) 69-75
  • 35 Encalada I, Richmond JC. Osteonecrosis after arthroscopic meniscectomy using radiofrequency. Arthroscopy 2004; 20 (06) 632-636
  • 36 Cetik O, Cift H, Comert B, Cirpar M. Risk of osteonecrosis of the femoral condyle after arthroscopic chondroplasty using radiofrequency: a prospective clinical series. Knee Surg Sports Traumatol Arthrosc 2009; 17 (01) 24-29
  • 37 Balcarek P, Kuhn A, Weigel A. , et al. Impact of monopolar radiofrequency energy on subchondral bone viability. Knee Surg Sports Traumatol Arthrosc 2010; 18 (05) 673-680
  • 38 Kosy JD, Schranz PJ, Toms AD, Eyres KS, Mandalia VI. The use of radiofrequency energy for arthroscopic chondroplasty in the knee. Arthroscopy 2011; 27 (05) 695-703
  • 39 Lotto ML, Wright EJ, Appleby D, Zelicof SB, Lemos MJ, Lubowitz JH. Ex vivo comparison of mechanical versus thermal chondroplasty: assessment of tissue effect at the surgical endpoint. Arthroscopy 2008; 24 (04) 410-415
  • 40 Lu Y, Edwards III RB, Nho S, Cole BJ, Markel MD. Lavage solution temperature influences depth of chondrocyte death and surface contouring during thermal chondroplasty with temperature-controlled monopolar radiofrequency energy. Am J Sports Med 2002; 30 (05) 667-673
  • 41 Muscolo DL, Costa-Paz M, Makino A, Ayerza MA. Osteonecrosis of the knee following arthroscopic meniscectomy in patients over 50-years old. Arthroscopy 1996; 12 (03) 273-279
  • 42 Türker M, Çetik Ö, Çırpar M, Durusoy S, Cömert B. Postarthroscopy osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc 2015; 23 (01) 246-250
  • 43 Barber FA, Iwasko NG. Treatment of grade III femoral chondral lesions: mechanical chondroplasty versus monopolar radiofrequency probe. Arthroscopy 2006; 22 (12) 1312-1317
  • 44 Shellock FG. Radiofrequency energy induced heating of bovine articular cartilage: comparison between temperature-controlled, monopolar, and bipolar systems. Knee Surg Sports Traumatol Arthrosc 2001; 9 (06) 392-397
  • 45 Turner AS, Tippett JW, Powers BE, Dewell RD, Mallinckrodt CH. Radiofrequency (electrosurgical) ablation of articular cartilage: a study in sheep. Arthroscopy 1998; 14 (06) 585-591
  • 46 Kaplan LD, Ernsthausen JM, Bradley JP, Fu FH, Farkas DL. The thermal field of radiofrequency probes at chondroplasty settings. Arthroscopy 2003; 19 (06) 632-640
  • 47 Kaplan L, Uribe JW. The acute effects of radiofrequency energy in articular cartilage: an in vitro study. Arthroscopy 2000; 16 (01) 2-5
  • 48 Amiel D, Ball ST, Tasto JP. Chondrocyte viability and metabolic activity after treatment of bovine articular cartilage with bipolar radiofrequency: an in vitro study. Arthroscopy 2004; 20 (05) 503-510
  • 49 Lu Y, Edwards III RB, Kalscheur VL, Nho S, Cole BJ, Markel MD. Effect of bipolar radiofrequency energy on human articular cartilage. Comparison of confocal laser microscopy and light microscopy. Arthroscopy 2001; 17 (02) 117-123
  • 50 Lu Y, Edwards III RB, Cole BJ, Markel MD. Thermal chondroplasty with radiofrequency energy. An in vitro comparison of bipolar and monopolar radiofrequency devices. Am J Sports Med 2001; 29 (01) 42-49
  • 51 Athanasian EA, Wickiewicz TL, Warren RF. Osteonecrosis of the femoral condyle after arthroscopic reconstruction of a cruciate ligament. Report of two cases. J Bone Joint Surg Am 1995; 77 (09) 1418-1422
  • 52 Lansdown DA, Shaw J, Allen CR, Ma CB. Osteonecrosis of the knee after anterior cruciate ligament reconstruction: a report of 5 cases. Orthop J Sports Med 2015; 3 (03) 2325967115576120
  • 53 Shenoy PM, Shetty GM, Kim DH, Wang KH, Choi JY, Nha KW. Osteonecrosis of the lateral femoral condyle following anterior cruciate ligament reconstruction: is bone bruising a risk factor?. Arch Orthop Trauma Surg 2010; 130 (03) 413-416
  • 54 al-Kaar M, Garcia J, Fritschy D, Bonvin JC. Aseptic osteonecrosis of the femoral condyle after meniscectomy by the arthroscopic approach [in French]. J Radiol 1997; 78 (04) 283-288
  • 55 Nakamura T, Matsumoto T, Nishino M, Tomita K, Kadoya M. Early magnetic resonance imaging and histologic findings in a model of femoral head necrosis. Clin Orthop Relat Res 1997; (334) 68-72
  • 56 Hofmann S, Kramer J, Vakil-Adli A, Aigner N, Breitenseher M. Painful bone marrow edema of the knee: differential diagnosis and therapeutic concepts. Orthop Clin North Am 2004; 35 (03) 321-333 , ix
  • 57 Lotke PA, Abend JA, Ecker ML. The treatment of osteonecrosis of the medial femoral condyle. Clin Orthop Relat Res 1982; (171) 109-116
  • 58 Juréus J, Lindstrand A, Geijer M, Robertsson O, Tägil M. The natural course of spontaneous osteonecrosis of the knee (SPONK): a 1- to 27-year follow-up of 40 patients. Acta Orthop 2013; 84 (04) 410-414
  • 59 Lecouvet FE, van de Berg BC, Maldague BE. , et al. Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. AJR Am J Roentgenol 1998; 170 (01) 71-77
  • 60 al-Rowaih A, Wingstrand H, Lindstrand A, Björkengren A, Thorngren KG, Gustafson T. Three-phase scintimetry in osteonecrosis of the knee. Acta Orthop Scand 1990; 61 (02) 120-127
  • 61 Jureus J, Lindstrand A, Geijer M, Roberts D, Tägil M. Treatment of spontaneous osteonecrosis of the knee (SPONK) by a bisphosphonate. Acta Orthop 2012; 83 (05) 511-514
  • 62 Kraenzlin ME, Graf C, Meier C, Kraenzlin C, Friedrich NF. Possible beneficial effect of bisphosphonates in osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc 2010; 18 (12) 1638-1644
  • 63 Nishii T, Sugano N, Miki H, Hashimoto J, Yoshikawa H. Does alendronate prevent collapse in osteonecrosis of the femoral head?. Clin Orthop Relat Res 2006; 443 (443) 273-279
  • 64 Meier C, Kraenzlin C, Friederich NF. , et al. Effect of ibandronate on spontaneous osteonecrosis of the knee: a randomized, double-blind, placebo-controlled trial. Osteoporos Int 2014; 25 (01) 359-366
  • 65 Marcheggiani Muccioli GM, Grassi A, Setti S. , et al. Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: pulsed electromagnetic fields therapy. Eur J Radiol 2013; 82 (03) 530-537
  • 66 Barroso GC, Fuchs T, Thiele E, Lima MN. Spontaneous osteonecrosis in an athlete's knee treated using a hyperbaric chamber: case report and review of the literature. Rev Bras Ortop 2015; 47 (03) 389-393
  • 67 Duany NG, Zywiel MG, McGrath MS. , et al. Joint-preserving surgical treatment of spontaneous osteonecrosis of the knee. Arch Orthop Trauma Surg 2010; 130 (01) 11-16
  • 68 Jacobs MA, Loeb PE, Hungerford DS. Core decompression of the distal femur for avascular necrosis of the knee. J Bone Joint Surg Br 1989; 71 (04) 583-587
  • 69 Forst J, Forst R, Heller KD, Adam G. Spontaneous osteonecrosis of the femoral condyle: causal treatment by early core decompression. Arch Orthop Trauma Surg 1998; 117 (1-2): 18-22
  • 70 Lee K, Goodman SB. Cell therapy for secondary osteonecrosis of the femoral condyles using the Cellect DBM System: a preliminary report. J Arthroplasty 2009; 24 (01) 43-48
  • 71 Rijnen WH, Luttjeboer JS, Schreurs BW, Gardeniers JW. Bone impaction grafting for corticosteroid-associated osteonecrosis of the knee. J Bone Joint Surg Am 2006; 88 (Suppl. 03) 62-68
  • 72 Marti CB, Rodriguez M, Zanetti M, Romero J. Spontaneous osteonecrosis of the medial compartment of the knee: a MRI follow-up after conservative and operative treatment, preliminary results. Knee Surg Sports Traumatol Arthrosc 2000; 8 (02) 83-88
  • 73 Tanaka Y, Mima H, Yonetani Y, Shiozaki Y, Nakamura N, Horibe S. Histological evaluation of spontaneous osteonecrosis of the medial femoral condyle and short-term clinical results of osteochondral autografting: a case series. Knee 2009; 16 (02) 130-135
  • 74 Bugbee W, Cavallo M, Giannini S. Osteochondral allograft transplantation in the knee. J Knee Surg 2012; 25 (02) 109-116
  • 75 Chambers C, Craig JG, Zvirbulis R, Nelson F. Spontaneous osteonecrosis of knee after arthroscopy is not necessarily related to the procedure. Am J Orthop 2015; 44 (06) E184-E189