Subscribe to RSS
DOI: 10.1055/s-0037-1609202
Application of Trimethylsilanolate Alkali Salts in Organic Synthesis
This research project was supported by the Ministry of Education, Youth and by the European Social Fund (CZ.1.07/2.3.00/20.0009). The infrastructure for this project (Institute of Molecular and Translation Medicine) was provided by the National Program of Sustainability (project LO1304).Publication History
Received: 07 November 2017
Accepted after revision: 19 December 2017
Publication Date:
24 January 2018 (online)
Abstract
Trimethylsilanolate alkali salts are widely used in organic synthesis, mainly due to their solubility in common organic solvents. They are frequently used as nucleophiles in ester hydrolysis, both in solution and solid-phase chemistry. However, they have also been used as mild bases or as specific reagents in some chemical transformations. Reactions employing trimethylsilanolate alkali salts as the key component are typically performed under mild reaction conditions. This review summarizes the utilization of trimethylsilanolate alkali salts in various organic transformations.
1 Introduction
2 Properties of Alkali Metal Trimethylsilanolates (TMSO[M])
3 Trimethylsilanolate Alkali Salts in Organic Synthesis
4 Conclusion
-
References
- 1 Ladenburg A. Justus Liebigs Ann. Chem. 1872; 164: 300
- 2 Sommer LH. Pietrusza EW. Whitmore FC. J. Am. Chem. Soc. 1946; 68: 2282
- 3 Sommer LH. Green LQ. Whitmore FC. J. Am. Chem. Soc. 1949; 71: 3253
- 4 Schmidbaur H. Schmidt M. J. Am. Chem. Soc. 1962; 84: 3600
- 5 Andrianov KA. Alanichev VN. Tikhonov VS. Zh. Obshch. Khim. 1968; 38: 1402
- 6 Seyferth D. Alleston DL. Inorg. Chem. 1963; 2: 417
- 7 Schmidbaur H. Perez-Garcia JA. Arnold HS. Z. Anorg. Allg. Chem. 1964; 328: 105
- 8 Schmidbaur H. Findeiss W. Angew. Chem. 1964; 76: 752
- 9 Schmidbaur H. Waldmann S. Angew. Chem. 1964; 76: 753
- 10 Renkema KB. Matthews RJ. Bush TL. Hendges SK. Redding RN. Vance FW. Silver ME. Snow SA. Huffman JC. Inorg. Chim. Acta 1996; 244: 185
- 11 Hyde JF. Johannson OK. Daudt WH. Fleming RF. Laudenslager HB. Roche MP. J. Am. Chem. Soc. 1953; 75: 5615
- 12 Tatlock WS. Rochow EG. J. Org. Chem. 1952; 17: 1555
- 13 Weiss E. Hoffmann K. Grutzmacher HF. Chem. Ber. 1970; 103: 1190
- 14 Pauer F. Sheldrick GM. Acta Crystallogr., Sect. B: Struct. Sci. 1993; 49: 1283
- 15 Montejo M. Cruz Cabeza AJ. Partal Urena F. Márquez F. Lopez Gonzalez JJ. J. Phys. Chem. A 2007; 111: 2629
- 16 Ermakov AI. Kirichenko EA. Pimkin NI. Chizhov Y. Kleimenov VI. J. Struct. Chem. 1982; 23: 62
- 17 Dubchak IL. Shklover VE. Struchkov Y. Kopylov VM. Prikhod’ko PL. Zh. Strukt. Khim. 1983; 24: 59
- 18 Kononov OV. Lobkov VD. Igonin VA. Lindeman SV. Shklover VE. Struchkov YT. Metalloorg. Khim. 1991; 4: 784
- 19 Kononov OV. Zh. Obshch. Khim. 1995; 65: 1683
- 20 Kipping FS. J. Chem. Soc., Trans. 1912; 101: 2108
- 21 Kipping FS. J. Chem. Soc., Trans. 1912; 101: 2125
- 22 Kipping FS. Lloyd LL. J. Chem. Soc. (London) 1901; 79: 449
- 23 Martin G. Chem. Ber. 1912; 45: 403
- 24 Robinson R. Kipping FS. J. Chem. Soc., Trans. 1912; 101: 2156
- 25 Robinson R. Kipping FS. J. Chem. Soc., Trans. 1914; 105: 40
- 26 Kan PT. Lenk CT. Schaaf RL. J. Org. Chem. 1961; 26: 4038
- 27 Cusa NW. Kipping FS. J. Chem. Soc. 1932; 2205
- 28 Pink HS. Kipping FS. J. Chem. Soc., Trans. 1923; 123: 2830
- 29 Radecki A. Szyrmulewicz R. Wiad. Chem. 1960; 14: 23
- 30 Borisov SN. Voronkov MG. Lukevits E. Organosilicon Compounds of Group II Elements. In Organosilicon Heteropolymers and Heterocompounds. Plenum Press; New York: 1970: 127
- 31 Kather W. Torkelson A. Ind. Eng. Chem. 1954; 46: 381
- 32 Laganis ED. Chenard BL. Tetrahedron Lett. 1984; 25: 5831
- 33 Lovric M. Cepanec I. Litvic M. Bartolincic A. Vinkovic V. Croat. Chem. Acta 2007; 80: 109
- 34 Dziemidowicz J. Witt D. Sliwka-Kaszynska M. Rachon J. Synthesis 2005; 569
- 35 Rachon J. Goedken V. Walborsky HM. J. Org. Chem. 1989; 54: 1006
- 36 Bettayeb B. Descoteaux C. Benoit F. Chapados C. Berube G. J. Surfactants Deterg. 2009; 12: 237
- 37 Barrett AG. M. Kasdorf K. J. Am. Chem. Soc. 1996; 118: 11030
- 38 Chidambaram R. Kant J. Zhu J. Lajeunesse J. Sirard P. Ermann P. Schierling P. Lee P. Kronenthal D. Org. Process Res. Dev. 2002; 6: 632
- 39 Slavik P. Eigner V. Lhotak P. Tetrahedron 2016; 72: 6348
- 40 Merchant KJ. Tetrahedron Lett. 2000; 41: 3747
- 41 McPherson CG. Livingstone K. Jamieson C. Simpson I. Synlett 2016; 27: 88
- 42 Lee HS. Kim SH. Kim JN. Bull. Korean Chem. Soc. 2011; 32: 1748
- 43 Krapcho AP. Waterhouse D. Synth. Commun. 1998; 28: 3415
- 44 Li J. Smith D. Qiao JX. Huang S. Krishnananthan S. Wong HS. Salvati ME. Balasubramanian BN. Chen BC. Synlett 2009; 633
- 45 Ma B. Lee WC. Tetrahedron Lett. 2010; 51: 385
- 46 Lemoine H. Markovic D. Deguin B. J. Org. Chem. 2014; 79: 4358
- 47 Coe DM. Perciaccante R. Procopiou PA. Org. Biomol. Chem. 2003; 1: 1106
- 48 Rossi SA. Shimkin KW. Xu Q. Mori-Quiroz LM. Watson DA. Org. Lett. 2013; 15: 2314
- 49 Reeve W. Erikson CM. Aluotto PF. Can. J. Chem. 1979; 57: 2747
- 50 Citra MJ. Chemosphere 1999; 38: 191
- 51 Baker-Glenn CA. G. Barrett AG. M. Gray AA. Procopiou PA. Ruston M. Tetrahedron Lett. 2005; 46: 7427
- 52 Brunner M. Reinhard R. Rahm R. Maas G. Synlett 1994; 627
- 53 Shimkin KW. Gildner PG. Watson DA. Org. Lett. 2016; 18: 988
- 54 Denmark SE. Sweis RF. J. Am. Chem. Soc. 2001; 123: 6439
- 55 Denmark SE. Tymonko SA. J. Org. Chem. 2003; 68: 9151
- 56 Denmark SE. Regens CS. Acc. Chem. Res. 2008; 41: 1486
- 57 Dakarapu US. Bokka A. Asgari P. Trog G. Hua Y. Nguyen HH. Rahman N. Jeon J. Org. Lett. 2015; 17: 5792
- 58 Brown RC. D. Keily J. Karim R. Tetrahedron Lett. 2000; 41: 3247
- 59 Minta E. Boutonnet C. Boutard N. Martinez J. Rolland V. Tetrahedron Lett. 2005; 46: 1795
- 60 Okorochenkov S. Burglova K. Popa I. Hlavac J. Org. Lett. 2015; 17: 180
- 61 Burglova K. Okorochenkov S. Budesinsky M. Hlavac J. Eur. J. Org. Chem. 2017; 389
- 62 Kubovicova L. Burglova K. Hlavac J. Org. Biomol. Chem. 2016; 14: 4824