Synthesis 2018; 50(17): 3402-3407
DOI: 10.1055/s-0037-1609447
special topic
© Georg Thieme Verlag Stuttgart · New York

Bromine Cation Initiated vic-Diphosphination of Styrenes with Diphosphines under Photoredox Catalysis

Nobutaka Otomura
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
,
Yuto Okugawa
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
,
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
,
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Nos. JP 15H05485 (Grant-in-Aid for Young Scientists (A)) to K.H. and JP 17H06092 (Grant-in-Aid for Specially Promoted Research) to M.M.
Further Information

Publication History

Received: 19 January 2018

Accepted after revision: 13 March 2018

Publication Date:
04 April 2018 (online)


Published as part of the Special Topic Photoredox Methods and their Strategic Applications in Synthesis

Abstract

An N-bromosuccinimide (NBS)-initiated vic-diphosphination of styrenes with diphosphines proceeds under visible-light-promoted Ir(ppy)3 photoredox catalysis to deliver the corresponding 1,2-diphosphinoethane derivatives in good yields. The NBS is a bromine cation source and generates a bromophosphine, which undergoes a single-electron reduction by the excited iridium species to form phosphinyl radicals of key species in the diphoshination reaction. The newly developed photoredox catalysis demonstrates better reaction efficiency, functional group compatibility, and scalability than the previous photocatalysis using N-fluorobenzenesulfonimide (NFSI) and silylphosphine.

Supporting Information

 
  • References

    • 1a Metal-Catalyzed Cross-Coupling Reactions . de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004
    • 1b Knowles WS. Angew. Chem. Int. Ed. 2002; 41: 1998
    • 1c Noyori R. Angew. Chem. Int. Ed. 2002; 41: 2008

      A recent review:
    • 2a Hirano K. Miura M. Tetrahedron Lett. 2017; 58: 4317

    • Limited successful examples with special reagents or harsh conditions:
    • 2b Burg AB. J. Am. Chem. Soc. 1961; 83: 2226
    • 2c Morse KW. Morse JG. J. Am. Chem. Soc. 1973; 95: 8469
    • 2d Chatt J. Hussain W. Leigh GJ. Ali HM. Picket CJ. Rankin DA. J. Chem. Soc., Dalton Trans. 1985; 1131
    • 2e Hajdók I. Lissner F. Nieger M. Strobel S. Gudat D. Organometallics 2009; 28: 1644

      A related double hydrophosphination of alkynes to DPPE-type ligand:
    • 3a Kamitani M. Itazaki M. Tamiya C. Nakazawa H. J. Am. Chem. Soc. 2012; 134: 11932
    • 3b Di Giuseppe A. De Luca R. Castarlenas R. Pérez-Torrente JJ. Crucianelli M. Oro LA. Chem. Commun. 2016; 52: 5554
    • 3c Yuan J. Zhu L. Zhang J. Li J. Cui C. Organometallics 2017; 36: 455
    • 3d Bookham JL. Smithies DM. Wright A. Thornton-Pett M. McFarlane M. J. Chem. Soc., Dalton Trans. 1998; 811
  • 4 Okugawa Y. Hirano K. Miura M. Angew. Chem. Int. Ed. 2016; 55: 13558
  • 5 Otomura N. Okugawa Y. Hirano K. Miura M. Org. Lett. 2017; 19: 4802
  • 6 Sato Y. Kawaguchi S.-i. Nomoto A. Ogawa A. Angew. Chem. Int. Ed. 2016; 55: 9700
  • 7 Hanss D. Freys JC. Bernardinelli G. Wenger OS. Eur. J. Inorg. Chem. 2009; 4850
  • 8 Unfortunately, tetracyclohexyldiphosphine Cy2P–PCy2 did not deliver the corresponding diphosphinated product at all.
  • 9 The bromophosphine BrPPh2 (4) is commercially available from Sigma-Aldrich and showed a singlet signal at δ = 74.0 in DCE-d 4 (31P{1H} NMR, 162 MHz). The imidylphosphine 5 was prepared from succinimide and ClPPh2. See the experimental section for detailed procedure and the Supporting Information for NMR spectra.

    • Selected reviews on visible-light-promoted photoredox catalysis:
    • 10a Yoon TP. Ischay MA. Du J. Nat. Chem. 2010; 2: 527
    • 10b Narayanam JM. R. Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 10c Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 10d Ravelli D. Protti S. Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 10e Koike T. Akita M. Acc. Chem. Res. 2016; 49: 1937

    • Recent advances in organophosphorus chemistry under photoredox catalysis:
    • 10f Luo K. Yang W.-C. Wu L. Asian J. Org. Chem. 2017; 6: 350

      The in situ generation of a MeOTf adduct (phosphonium cation) can be supported by observation of a characteristic large 1 J PP coupling (ca. 300 Hz) in 31P{1H} NMR studies. See the Supporting Information for details. Also see:
    • 11a Dahl O. Tetrahedron Lett. 1982; 23: 1493
    • 11b Unoh Y. Hirano K. Miura M. J. Am. Chem. Soc. 2017; 139: 6106
    • 12a Arias-Rotondo DM. McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
    • 12b Teegardin K. Day JI. Chan J. Weaver J. Org. Process Res. Dev. 2016; 20: 1156

      The obtained phosphine sulfides can be readily desulfidated to the corresponding phosphines:
    • 13a Zablocka M. Delest B. Igau A. Skowronska A. Majoral J.-P. Tetrahedron Lett. 1997; 38: 5997
    • 13b Saito M. Nishibayashi Y. Uemura S. Organometallics 2004; 23: 4012
    • 13c Ref 4.
    • 14a Jang YH. Youn SW. Org. Lett. 2014; 16: 3720
    • 14b Fu H. Look GC. Zhang W. Jacobsen EN. Wong C.-W. J. Org. Chem. 1991; 56: 6497
    • 14c Itoh T. Matsueda T. Shimizu Y. Kanai M. Chem. Eur. J. 2015; 21: 15955
    • 15a Sato A. Yorimitsu H. Oshima K. Angew. Chem. Int. Ed. 2005; 44: 1694
    • 15b Dodds DL. Haddow MF. Orpen AG. Pringle PG. Woodward G. Organometallics 2006; 25: 5937