Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(15): 2974-2980
DOI: 10.1055/s-0037-1609448
DOI: 10.1055/s-0037-1609448
special topic
Iron-Catalyzed Carboiodination of Alkynes
We thank NSFC (Grant Nos. 21502191 and 21672213), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000), The 100 Talents Program, ‘The 1000 Youth Talents Program’, and Haixi Institute of CAS (CXZX-2017-P01) for financial support.Further Information
Publication History
Received: 01 February 2018
Accepted after revision: 13 March 2018
Publication Date:
16 April 2018 (online)
Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis
Abstract
An iron-catalyzed carboiodination of alkynes with alkyl iodides at room temperature was developed. This method could provide synthetically useful vinyl iodides with general alkyl chains, fluoroalkyl group, ester, and cyano group. Conjugated alkynes or unconjugated alkynes were both suitable for this transformation. A radical pathway was proposed for the mechanism and acetyl tert-butyl peroxide was selected as the radical initiator. Alkenes could also be applied to this chemistry and produce more complex alkyl iodides.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609448.
- Supporting Information
-
References
- 1a Gao P. Song X.-R. Liu X.-Y. Liang Y.-M. Chem. Eur. J. 2015; 21: 7648
- 1b Studer A. Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
- 1c Yin G. Mu X. Liu G. Acc. Chem. Res. 2016; 49: 2413
- 1d Koike T. Akita M. Acc. Chem. Res. 2016; 49: 1937
- 2a Wille U. Chem. Rev. 2013; 113: 813
- 2b Merino E. Nevado C. Chem. Soc. Rev. 2014; 43: 6598
- 2c Li Z. García-Domínguez A. Nevado C. Angew. Chem. Int. Ed. 2016; 55: 6938
- 2d Huang L. Rudolph M. Rominger F. Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 4808
- 2e Koike T. Akita M. Org. Chem. Front. 2016; 3: 1345
- 2f Hu L. Mück-Lichtenfeld C. Wang T. He G. Gao M. Zhao J. Chem. Eur. J. 2016; 22: 911
- 2g Sun J. Zheng G. Xiong T. Zhang Q. Zhao J. Li Y. Zhang Q. ACS Catal. 2016; 6: 3674
- 2h Zheng G. Zhao J. Li Z. Zhang Q. Sun J. Sun H. Zhang Q. Chem. Eur. J. 2016; 22: 3513
- 2i Tlahuext-Aca A. Hopkinson MN. Garza-Sanchez RA. Glorius F. Chem. Eur. J. 2016; 22: 5909
- 2j He Y.-T. Li L.-H. Wang Q. Wu W. Liang Y.-M. Org. Lett. 2016; 18: 5158
- 3a Giese B. Kopping B. Göbel T. Dickhuat J. Thoma G. Kulicke KJ. Trach F. Org. React. 1996; 48: 301
- 3b Clark AJ. Eur. J. Org. Chem. 2016; 2231
- 3c Ravelli D. Protti S. Fagnoni M. Chem. Rev. 2016; 116: 9850
- 4a Seechurn CC. C. J. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 4b Jana R. Pathak TP. Sigman MS. Chem. Rev. 2011; 111: 1417
- 4c Molnár Á. Chem. Rev. 2011; 111: 2251
- 4d Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
- 4e Corbet J.-P. Mignani G. Chem. Rev. 2006; 106: 2651
- 4f Tobisu M. Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 4g Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
- 5a Amato C. Naud C. Calas P. Commeyras A. J. Fluorine Chem. 2002; 113: 55
- 5b Guan H.-P. Tang X.-Q. Luo B.-H. Hu C.-M. Synthesis 1997; 1489
- 5c Li A.-R. Chen Q.-Y. Synthesis 1996; 606
- 5d Takai K. Takagi T. Baba T. Kanamori T. J. Fluorine Chem. 2004; 125: 1959
- 5e Tang X.-Q. Hu C.-M. J. Chem. Soc., Chem. Commun. 1994; 631
- 5f Tang X.-Q. Hu C.-M. J. Fluorine Chem. 1995; 73: 133
- 5g Zhu J. Wang F. Hu J. Sci. China Chem. 2011; 54: 95
- 5h Cao P. Duan J.-X. Chen Q.-Y. J. Chem. Soc., Chem. Commun. 1994; 737
- 5i Long Z.-Y. Chen Q.-Y. Tetrahedron Lett. 1998; 39: 8487
- 5j Xiao Z. Hu H. Ma J. Chen Q. Guo Y. Chin. J. Chem. 2013; 31: 939
- 5k Yang X. Wang Z. Fang X. Yang X. Wu F. Shen Y. Synthesis 2007; 1768
- 6a Fang X. Yang X. Yang X. Mao S. Wang Z. Chen G. Wu F. Tetrahedron 2007; 63: 10684
- 6b Brace NO. J. Org. Chem. 1967; 32: 2711
- 6c Brace NO. J. Fluorine Chem. 1999; 93: 1
- 7a Li Y. Li H. Hu J. Tetrahedron 2009; 65: 478
- 7b Takeyama Y. Ichinose Y. Oshima K. Utimoto K. Tetrahedron Lett. 1989; 30: 3159
- 8a Ishihara T. Kuroboshi M. Okada Y. Chem. Lett. 1986; 1895
- 8b Kudyakova YS. Bazhin DN. Burgart YN. Saloutin VI. Chupakhin ON. Russ. J. Org. Chem. 2013; 49: 469
- 8c Takagi T. Kanamori T. J. Fluorine Chem. 2011; 132: 427
- 8d Motoda D. Kinoshita H. Shinokubo H. Oshima K. Adv. Synth. Catal. 2002; 344: 261
- 8e Guo X.-C. Chen Q.-Y. J. Fluorine Chem. 1998; 88: 63
- 8f Xu T. Cheung CW. Hu X. Angew. Chem. Int. Ed. 2014; 53: 4910
- 9a Tewari A. Hein M. Zapf A. Beller M. Tetrahedron Lett. 2004; 45: 7703
- 9b Wada T. Sumida Y. Kondoh A. Yorimitsu H. Oshima K. Bull. Chem. Soc. Jpn. 2009; 82: 1433
- 10a Chesa JF. Velasco D. López-Calahorra F. Synth. Commun. 2010; 40: 1822
- 10b Jennings MP. Cork EA. Ramachandran PV. J. Org. Chem. 2000; 65: 8763
- 11a Habibi MH. Mallouk TE. J. Fluorine Chem. 1991; 53: 53
- 11b Leedham K. Haszeldine RN. J. Chem. Soc. 1954; 1634
- 11c Roh G.-b. Iqbal N. Cho EJ. Chin. J. Chem. 2016; 34: 459
- 11d Slodowicz M. Barata-Vallejo S. Vázquez A. Nudelman NS. Postigo A. J. Fluorine Chem. 2012; 135: 137
- 11e Beniazza R. Atkinson R. Absalon C. Castet F. Denisov SA. McClenaghan ND. Lastécouères D. Vincent J.-M. Adv. Synth. Catal. 2016; 358: 2949
- 11f Haszeldine RN. J. Chem. Soc. 1953; 922
- 11g Iqbal N. Jung J. Park S. Cho EJ. Angew. Chem. Int. Ed. 2014; 53: 539
- 11h Tsuchii K. Imura M. Kamada N. Hirao T. Ogawa A. J. Org. Chem. 2004; 69: 6658
- 12 Ichinose Y. Matsunaga S-i. Fugami K. Oshima K. Utimoto K. Tetrahedron Lett. 1989; 30: 3155
- 13 Tang Y. Li C. Org. Lett. 2004; 6: 3229
- 14 Longpré F. Rusu N. Larouche M. Hanna R. Daoust B. Can. J. Chem. 2008; 86: 970
- 15 Lemoine P. Daoust B. Tetrahedron Lett. 2008; 49: 6175
- 16 Curran DP. Kim D. Ziegler C. Tetrahedron 1991; 47: 6189
- 17 Wallentin C.-J. Nguyen JD. Finkbeiner P. Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
- 18 Feray L. Bertrand MP. Eur. J. Org. Chem. 2008; 3164
- 19a Li Y. Han Y. Xiong H. Zhu N. Qian B. Ye C. Kantchev EA. B. Bao H. Org. Lett. 2016; 18: 392
- 19b Li Y. Ge L. Qian B. Babu KR. Bao H. Tetrahedron Lett. 2016; 57: 5677
- 19c Zhu N. Zhao J. Bao H. Chem. Sci. 2017; 8: 2081
- 19d Jian W. Ge L. Jiao Y. Qian B. Bao H. Angew. Chem. Int. Ed. 2017; 56: 3650
- 19e Zhu X. Ye C. Li Y. Bao H. Chem. Eur. J. 2017; 23: 10254
- 20 Puri S. Thirupathi N. Reddy MS. Org. Lett. 2014; 16: 5246
- 21 For a discussion on the regioselectivity about phenylacetylenes: Bartoli G. Cipolletti R. Antonio GD. Giovannini R. Lanari S. Marcolini M. Marcantoni E. Org. Biomol. Chem. 2010; 8: 3509
- 22 Che C. Zheng H. Zhu G. Org. Lett. 2015; 17: 1617
- 23 Xu T. Cheung CW. Hu X. Angew. Chem. Int. Ed. 2014; 53: 4910
- 24 Yoshioka E. Kohtani S. Jichu T. Fukazawa T. Nagai T. Kawashima A. Takemoto Y. Miyabe H. J. Org. Chem. 2016; 81: 7217
Selected recent reviews on difunctionalization of carbon–carbon multiple bonds:
Selected recent reviews and papers on difunctionalization of C≡C bonds via radical pathways:
Selected reviews on carboiodination of alkynes in a radical pathway:
Selected reviews on vinyl iodides as the reaction partners: