Synthesis 2018; 50(15): 2974-2980
DOI: 10.1055/s-0037-1609448
special topic
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Carboiodination of Alkynes

Weili Deng
a   School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, P. R. of China   Email: liyg@hfut.edu.cn
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China   Email: hlbao@fjirsm.ac.cn
,
Yajun Li
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China   Email: hlbao@fjirsm.ac.cn
,
You-Gui Li*
a   School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, P. R. of China   Email: liyg@hfut.edu.cn
,
b   Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China   Email: hlbao@fjirsm.ac.cn
› Author Affiliations
We thank NSFC (Grant Nos. 21502191 and 21672213), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000), The 100 Talents Program, ‘The 1000 Youth Talents Program’, and Haixi Institute of CAS (CXZX-2017-P01) for financial support.
Further Information

Publication History

Received: 01 February 2018

Accepted after revision: 13 March 2018

Publication Date:
16 April 2018 (online)


Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis

Abstract

An iron-catalyzed carboiodination of alkynes with alkyl iodides­ at room temperature was developed. This method could provide synthetically useful vinyl iodides with general alkyl chains, fluoroalkyl group, ester, and cyano group. Conjugated alkynes or unconjugated alkynes were both suitable for this transformation. A radical pathway was proposed for the mechanism and acetyl tert-butyl peroxide was selected as the radical initiator. Alkenes could also be applied to this chemistry and produce more complex alkyl iodides.

Supporting Information