RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2018; 50(12): 2416-2422
DOI: 10.1055/s-0037-1609483
DOI: 10.1055/s-0037-1609483
paper
Efficient Synthesis of Chromenes from Vinyl o-Quinone Methides via a Brønsted Acid Catalyzed Electrocyclization Process
We much appreciate the financial support from NSFC (21702077 and 21772069), the Natural Science Foundation of Jiangsu Province (BK20160003 and BK20170227), TAPP, and Six Kinds of Talents Project of Jiangsu Province (SWYY-025).Weitere Informationen
Publikationsverlauf
Received: 31. Januar 2018
Accepted after revision: 17. März 2018
Publikationsdatum:
25. April 2018 (online)

Abstract
An efficient approach for the synthesis of chromene derivatives from vinyl o-quinone methides was established via a Brønsted acid catalyzed electrocyclization. By using this methodology, a series of structurally diversified chromenes was synthesized in a highly atom-economic and environmentally benign manner with generally good to excellent yields (up to 98% yield). This reaction will not only provide an efficient method for the construction of chromene scaffolds, but also enrich the research area of o-quinone methides.
Key words
o-quinone methide - electrocyclization - Brønsted acid catalysis - chromenes - heterocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609483.
- Supporting Information
-
References
- 1 These authors contributed equally to this work.
- 2a Pratap R. Ram VJ. Chem. Rev. 2014; 114: 10476
- 2b Costa M. Dias TA. Brito A. Proenca F. Eur. J. Med. Chem. 2016; 123: 487
- 3a Cheenpracha S. Karalai C. Ponglimanont C. Kanjana-Opas A. J. Nat. Prod. 2009; 72: 1395
- 3b Chen J. Leng H. Duan Y. Zhao W. Yang G. Guo Y. Chen Y. Hu Q. Phytochem. Lett. 2013; 6: 144
- 4 Liby K. Rendi M. Suh N. Royce DB. Risingsong R. Williams CR. Lamph W. Labrie F. Krajewski S. Xu X. Kim H. Brown P. Sporn MB. Clin. Cancer Res. 2006; 12: 5902
- 5 Cheng J.-F. Ishikawa A. Ono Y. Arrhenius T. Nadzan A. Bioorg. Med. Chem. Lett. 2003; 13: 3647
- 6 Chen B. Fairhurst RA. Floersheimer A. Furet P. Jiang S. Lu W. Marsilje TH. Vaupel A. Patent WO2011064211A1, 2011
- 7a Shi Y.-L. Shi M. Org. Biomol. Chem. 2007; 5: 1499
- 7b Ferreira SB. da Silva F. dC. Pinto AC. Gonzaga DT. G. Ferreira VF. J. Heterocycl. Chem. 2009; 46: 1080
- 7c Majumdar N. Paul ND. Mandal S. de Bruin B. Wulff WD. ACS Catal. 2015; 5: 2329
- 7d Sadek KU. Mekheimer RA. H. Abd-Elmonem M. Abdel-Hameed A. Elnagdi MH. Tetrahedron 2017; 28: 1462
- 8a Wang Z.-Q. Lei Y. Zhou M.-B. Chen G.-X. Song R.-J. Xie Y.-X. Li J.-H. Org. Lett. 2011; 13: 14
- 8b Cui Z. Shang X. Shao X.-F. Liu Z.-Q. Chem. Sci. 2012; 3: 2853
- 8c Hornillos V. van Zijl AW. Feringa BL. Chem. Commun. 2012; 48: 3712
- 8d Majumdar N. Korthals KA. Wulff WD. J. Am. Chem. Soc. 2012; 134: 1357
- 8e Paul ND. Mandal S. Otte M. Cui X. Zhang XP. de Bruin B. J. Am. Chem. Soc. 2014; 136: 1090
- 8f Siyang H.-X. Wu X.-R. Ji X.-Y. Wu X.-Y. Liu P.-N. Chem. Commun. 2014; 50: 8514
- 8g Zeng B.-S. Yu X.-Y. Siu P.-W. Scheidt KA. Chem. Sci. 2014; 5: 2277
- 8h Wang P.-S. Liu P. Zhai Y.-J. Lin H.-C. Han Z.-Y. Gong L.-Z. J. Am. Chem. Soc. 2015; 137: 12732
- 8i Kuppusamy R. Muralirajan K. Cheng C.-H. ACS Catal. 2016; 6: 3909
- 8j Qiu Y.-F. Song X.-R. Li M. Zhu X.-Y. Wang A.-Q. Yang F. Han Y.-P. Zhang H.-R. Jin D.-P. Li Y.-X. Liang Y.-M. Org. Lett. 2016; 18: 1514
- 8k Liu S. Chen K. Lan X.-C. Hao W.-J. Li G. Tu S.-J. Jiang B. Chem. Commun. 2017; 53: 10692
- 8l Xia J. Nie Y. Yang G. Liu Y. Zhang W. Org. Lett. 2017; 19: 4884
- 8m Zheng Y. Qiu L. Hong K. Dong S. Xu X. Chem. Eur. J. 2018; DOI 10.1002/chem.201704759
- 8n Ma C. Zhao Y. Org. Biomol. Chem. 2018; 16: 703
- 9a Akiyama T. Chem. Rev. 2007; 107: 5744
- 9b Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
- 9c Terada M. Chem. Commun. 2008; 4097
- 9d Terada M. Synthesis 2010; 1929
- 9e Yu J. Shi F. Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
- 10a Gharpure SJ. Sathiyanarayanan AM. Vuram PK. RSC Adv. 2013; 3: 18279
- 10b Hsiao C.-C. Raja S. Liao H.-H. Atodiresei I. Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
- 10c Zhao J.-J. Sun S.-B. He S.-H. Wu Q. Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
- 11a Pathak TP. Sigman MS. J. Org. Chem. 2011; 76: 9210
- 11b Willis NJ. Bray CD. Chem. Eur. J. 2012; 18: 9160
- 11c Bai W.-J. David JG. Feng Z.-G. Weaver MG. Wu K.-L. Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
- 11d Singh MS. Nagaraju A. Anand N. Chowdhury S. RSC Adv. 2014; 4: 55924
- 11e Wang Z. Sun J. Synthesis 2015; 47: 3629
- 11f Jaworski AA. Scheidt KA. J. Org. Chem. 2016; 81: 10145
- 12a Mattson AE. Scheidt KA. J. Am. Chem. Soc. 2007; 129: 4508
- 12b Luan Y. Schaus SE. J. Am. Chem. Soc. 2012; 134: 19965
- 12c Guo WG. Wu B. Zhou X. Chen P. Wang X. Zhou YG. Liu Y. Li C. Angew. Chem. Int. Ed. 2015; 54: 4522
- 12d Lewis RS. Garza CJ. Dang AT. Pedro TK. A. Chain WJ. Org. Lett. 2015; 17: 2278
- 12e Zhao W. Wang Z. Chu B. Sun J. Angew. Chem. Int. Ed. 2015; 54: 1910
- 12f Wang Z. Ai F. Wang Z. Zhao W. Zhu G. Lin Z. Sun J. J. Am. Chem. Soc. 2015; 137: 383
- 13a Jiang X.-L. Liu S.-J. Gu Y.-Q. Mei G.-J. Shi F. Adv. Synth. Catal. 2017; 359: 3341
- 13b Lian X.-L. Adili A. Liu B. Tao Z.-L. Han Z.-Y. Org. Biomol. Chem. 2017; 15: 3670
- 13c Yang Q.-Q. Xiao W.-J. Eur. J. Org. Chem. 2017; 233
- 14a Saha S. Schneider C. Org. Lett. 2015; 17: 648
- 14b Yu X.-Y. Chen J.-R. Wei Q. Cheng H.-G. Liu Z.-C. Xiao W.-J. Chem. Eur. J. 2016; 22: 6774
- 14c Zhang Y.-C. Zhu Q.-N. Yang X. Zhou L.-J. Shi F. J. Org. Chem. 2016; 81: 1681
- 14d Chen P. Wang K. Guo W. Liu X. Liu Y. Li C. Angew. Chem. Int. Ed. 2017; 56: 3689
- 14e Wang Z. Sun J. Org. Lett. 2017; 19: 2334
- 15a Izquierdo J. Orue A. Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
- 15b Lv H. Jia WQ. Sun L.-H. Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
- 15c Mei G.-J. Zhu Z.-Q. Zhao J.-J. Bian C.-Y. Chen J. Chen R.-W. Shi F. Chem. Commun. 2017; 53: 2768
- 16a Lv H. You L. Ye S. Adv. Synth. Catal. 2009; 351: 2822
- 16b Adili A. Tao Z.-L. Chen D.-F. Han Z.-Y. Org. Biomol. Chem. 2015; 13: 2247
- 16c Ref. 10b
- 16d Jin J.-H. Li X.-Y. Luo X. Fossey JS. Deng W.-P. J. Org. Chem. 2017; 82: 5424
- 16e Wang Z. Wang T. Yao W. Lu Y. Org. Lett. 2017; 19: 4126
- 17a For an early example, see: Jurd L. Tetrahedron 1977; 33: 163
- 17b For a mechanistic investigation, see: Bishop LM. Winkler M. Houk KN. Bergman RG. Trauner D. Chem. Eur. J. 2008; 14: 5405
- 17c For a catalytic asymmetric transformation, see: Rueping M. Uria U. Lin M.-Y. Atodiresei I. J. Am. Chem. Soc. 2011; 133: 3732
For selected reviews, see:
For selected reviews, see:
For selected examples, see:
For related reviews, see:
For some examples, see:
For related reviews, see:
For selected 1,4-additions of o-QMs, see:
For [4+1] annulations of o-QMs, see:
For selected [4+2] annulations of o-QMs, see:
For [4+3] annulations of o-QMs, see:
For selected examples of o-VQMs-involved reactions, see: