Synthesis 2018; 50(11): 2255-2265
DOI: 10.1055/s-0037-1609491
paper
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Free Synthesis of 3-(2-Quinolinemethylene)-Substituted Isoindolinones in Water

Youping Tian
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: fengxu@snnu.edu.cn
,
Jialin Sun
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: fengxu@snnu.edu.cn
,
Kaihua Zhang
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: fengxu@snnu.edu.cn
,
Gaoqiang Li
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: fengxu@snnu.edu.cn
,
Feng Xu*
Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710062, P. R. of China   Email: fengxu@snnu.edu.cn
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21572123, 21172138 and 21302117), the Fundamental Research Funds for the Central Universities (GK201601003 and GK201603047) and the Distinguished Doctoral Research Funds from Shaanxi Normal University (S2011YB04).
Further Information

Publication History

Received: 05 November 2017

Accepted after revision: 05 March 2018

Publication Date:
28 March 2018 (online)


Abstract

A facile and environmentally benign approach toward the synthesis of novel 3-alkyl-substituted isoindolinones by three-component reactions of 2-formylbenzoic acids, primary amines and 2-methyl­azaarenes in water under catalyst- and additive-free conditions is described. This protocol features the direct construction of multiple C–N and C–C bonds via a tandem Mannich-type reaction and intramolecular cyclization in a one-pot fashion, affording the desired 3-(2-quinolinemethylene)-substituted isoindolinones in high to excellent yields.

Supporting Information

 
  • References

  • 1 Amberg W. Lange U. Ochse M. Pohlki F. Frauke H. Charles W. Zanze I. Zhao HH. Li H.-Q. Wang YX. WO2013/120835A1, 2013
    • 2a Valencia E. Freyer AJ. Shamma M. Fajardo V. Tetrahedron Lett. 1984; 25: 599
    • 2b Comins D. Schilling S. Zhang Y. Org. Lett. 2005; 7: 95
  • 3 Stuk TL. Assink BK. Bates RC. Erdman DT. Fedij V. Jennings SM. Lassig JA. Smith RJ. Smith TL. Org. Process Res. Dev. 2003; 7: 851
  • 4 Belliotti TR. Brink WA. Kesten SR. Rubin JR. Wustrow DJ. Zoski KT. Whetzel SZ. Corbin AE. Pugsley TA. Heffner TG. Wise LD. Bioorg. Med. Chem. Lett. 1998; 8: 1499
  • 5 Ferland JM. Demerson CA. Humber LG. Can. J. Chem. 1985; 63: 361
    • 6a Linden M. Hadler D. Hofmann S. Hum. Psychopharmacol. 1997; 12: 445
    • 6b Zhuang ZP. Kung MP. Mu M. Kung HF. J. Med. Chem. 1998; 41: 157
    • 7a Takahashi I. Hirano E. Kawakami T. Kitajima H. Heterocycles 1996; 43: 2343
    • 7b Lawrence NJ. Liddle J. Bushell SM. Jackson DA. J. Org. Chem. 2002; 67: 457
  • 8 Laboratori Baldacci, S. P. A. Japanese Patent 5,946,268, 1984; Chem. Abstr. 1984, 101, 54922.
  • 9 Lippmann W. US Patent 4267189, 1981 ; Chem. Abstr. 1981, 95, 61988m
  • 10 Achinami K. Ashizawa N. Kobayasui F. Japanese Patent 03,133,955, 1991 ; Chem. Abstr. 1991, 115, 255977j
    • 11a Pendrak I. Barney S. Wittrock R. Lambert DM. Kingsbury WD. J. Org. Chem. 1994; 59: 2623
    • 11b De Clercq E. J. Med. Chem. 1995; 38: 2491
    • 12a Taylor EC. Zhou P. Jennings LD. Mao Z. Hu B. Jun JG. Tetrahedron Lett. 1997; 38: 521
    • 12b Riedinger C. Endicott JA. Kemp SJ. Smyth LA. Watson A. Valeur E. Golding BT. Griffin RJ. Hardcastle IR. Noble ME. McDonnell JM. J. Am. Chem. Soc. 2008; 130: 16038

      For selected recent examples, see:
    • 13a Gutierrez AJ. Shea KJ. Svoboda JJ. J. Org. Chem. 1989; 54: 4335
    • 13b Huang X. Xu J. J. Org. Chem. 2009; 74: 8859

      Selected examples:
    • 14a Grigg R. Dorrity MJ. R. Malone JF. Mongkolaus-Savaratana T. Norbert WD. J. A. Sridharan V. Tetrahedron Lett. 1990; 31: 3075
    • 14b Couty S. Liégault B. Meyer C. Cossy J. Org. Lett. 2004; 6: 2511

      Selected examples:
    • 15a Epsztajn J. Grzelak R. Jóźwiak A. Synthesis 1996; 1212
    • 15b Aubert T. Farnier M. Guilard R. Can. J. Chem. 1990; 68: 842
    • 15c Mamidyala SK. Cooper MA. Chem. Commun. 2013; 49: 8407

      Selected examples:
    • 16a Luzzio FA. Zacherl DP. Tetrahedron Lett. 1998; 39: 2285
    • 16b Das S. Addis D. Knopke LR. Bentrup U. Junge K. Brukner A. Beller M. Angew. Chem. Int. Ed. 2011; 50: 9180
    • 16c Shi LY. Hu L. Wang J. Cao X. Gu H. Org. Lett. 2012; 14: 1876
    • 16d Cabrero-Antonino JR. Sorribes I. Junge K. Beller M. Angew. Chem. Int. Ed. 2016; 55: 387
    • 16e Cabrero-Antonino JR. Adam R. Papa V. Holsten M. Junge K. Beller M. Chem. Sci. 2017; 8: 5536

      Selected examples:
    • 17a Grigg R. Gai X. Sridharan V. Zhang L. Khamnaen T. Rajviroongit S. Collard S. Keep A. Can. J. Chem. 2005; 83: 990
    • 17b Wrigglesworth JW. Cox B. Lloyd-Jones GC. Booker-Milburn KI. Org. Lett. 2011; 13: 5326
    • 17c Li DD. Yuan TT. Wang GW. Chem. Commun. 2011; 47: 12789
    • 17d Sun LX. Zeng T. Jiang D. Dai LY. Li CJ. Can. J. Chem. 2011; 90: 92
    • 17e Bisai V. Suneja A. Singh VK. Angew. Chem. Int. Ed. 2014; 53: 10737
    • 17f Reddy MC. Jeganmohan M. Org. Lett. 2014; 16: 4866
    • 17g Xia C. White AJ. P. Hii KK. M. J. Org. Chem. 2016; 81: 7931
    • 17h Zhang Y. Wang D. Cui S. Org. Lett. 2015; 17: 2494
    • 17i Nozawa-Kumada K. Kadokawa J. Kameyama T. Kondo Y. Org. Lett. 2015; 17: 4479
    • 17j Jiménez J. Kim BS. Walsh PJ. Adv. Synth. Catal. 2016; 358: 2829
    • 17k Dutta M. Mandal S. Peguand R. Pratihar S. J. Org. Chem. 2017; 82: 2193
    • 17l Liu L. Qiang J. Bai SH. Sung HL. Miao CB. Li J. Adv. Synth. Catal. 2017; 359: 1283

      Selected examples:
    • 18a Qian B. Guo S. Xia C. Huang H. Adv. Synth. Catal. 2010; 352: 3195
    • 18b You H. Chen F. Lei M. Hu L. Tetrahedron Lett. 2013; 54: 2972
    • 18c Hu J. Qin HL. Xu W. Li J. Zhang F. Zheng H. Chem. Commun. 2014; 50: 15780
    • 18d He Y. Cheng C. Chen B. Duan K. Zhuang Y. Yuan B. Zhang M. Zhou Y. Zhou Z. Su YJ. Cao R. Qiu L. Org. Lett. 2014; 16: 6366
    • 18e Bisai V. Unhale RA. Suneja A. Dhanasekaran S. Singh VK. Org. Lett. 2015; 17: 2102
    • 18f Nammalwar B. Prasad Muddala N. Murie M. Bunce RA. Green Chem. 2015; 17: 2495
    • 18g Dhanasekaran S. Suneja A. Bisai V. Singh VK. Org. Lett. 2016; 18: 634
    • 18h Chen TT. Cai C. Catal. Commun. 2016; 74: 119

      Selected examples:
    • 19a López-Valdez G. Olguín-Uribe S. Millan-Ortíz A. Gamez-Montaño R. Miranda LD. Tetrahedron 2011; 67: 2693
    • 19b Zhang L. Kim JB. Jang DO. Tetrahedron Lett. 2014; 55: 2654
    • 19c Verma A. Patel S. Meenakshi M. Kumar A. Yadav A. Kumar S. Jana S. Sharma S. Prasad CD. Kumar S. Chem. Commun. 2015; 51: 1371
    • 19d Zhu C. Liang Y. Hong X. Sun H. Sun WY. Houk KN. Shi Z. J. Am. Chem. Soc. 2015; 137: 7564

      Selected examples:
    • 20a Chen F. Lei M. Hu L. Green Chem. 2014; 16: 2472
    • 20b Shen SC. Sun XW. Lin GQ. Green Chem. 2013; 15: 896
    • 20c Adib M. Sheikhi E. Yazzaf R. Bijanzadeh HR. Mirzaei P. Tetrahedron Lett. 2016; 57: 841
    • 20d Che F. Fu Z. Shen T. Lin Y. Song Q. Synthesis 2015; 47: 3403
    • 20e Sashidhara KV. Singh LR. Palnati GR. Avula SR. Kant R. Synlett 2016; 27: 2384
    • 20f Adib M. Peytam F. Zainali M. Zhu LG. Wu J. Tetrahedron Lett. 2015; 56: 4729
    • 20g Han FZ. Su BB. Jia LN. Wang PW. Hu XP. Adv. Synth. Catal. 2017; 359: 146
    • 21a Michael JP. Nat. Prod. Rep. 1997; 14: 605
    • 21b Taylor RD. MacCoss M. Lawson AD. G. J. Med. Chem. 2014; 57: 5845
  • 22 Vanjari R. Singh KN. Chem. Soc. Rev. 2015; 44: 8062

    • Selected examples:
    • 23a Wang FF. Luo CP. Wang Y. Deng G. Yang L. Org. Biomol. Chem. 2012; 10: 8605
    • 23b Jin J.-J. Niu H.-Y. Qu G.-R. Guo H.-M. Fossey JS. RSC Adv. 2012; 2: 5968
    • 23c Niu R. Xiao J. Liang T. Li X. Org. Lett. 2012; 14: 676
    • 23d Graves VB. Shaikh A. Tetrahedron Lett. 2013; 54: 695
    • 23e Jin J.-J. Wang D.-C. Niu H.-Y. Wu S. Qu G.-R. Zhang Z.-B. Guo H.-M. Tetrahedron 2013; 69: 6579
    • 23f Lansakara AI. Farrell DP. Pigge FC. Org. Biomol. Chem. 2014; 12: 1090
    • 23g Mao D. Hong G. Wu S. Liu X. Yu J. Wang L. Eur. J. Org. Chem. 2014; 3009
    • 23h Jiang K. Pi D. Zhou H. Liu S. Zou K. Tetrahedron 2014; 70: 3056
    • 23i Xu L. Shao Z. Wang L. Zhao H. Xiao J. Tetrahedron Lett. 2014; 55: 6856
    • 23j Kumar A. Shukla RD. Green Chem. 2015; 17: 848
    • 23k Fu S. Wang L. Dong H. Yu J. Xu L. Xiao J. Tetrahedron Lett. 2016; 57: 4533
    • 23l Muthukumar A. Sekar G. Org. Biomol. Chem. 2017; 15: 691

      Selected examples:
    • 24a Komai H. Yoshino T. Matsunaga S. Kanai M. Org. Lett. 2011; 13: 1706
    • 24b Yang Y. Xie C. Xie Y. Zhang Y. Org. Lett. 2012; 14: 957
    • 24c Li H.-Y. Xing L.-J. Xu T. Wang P. Liu R.-H. Wang B. Tetrahedron Lett. 2013; 54: 858
    • 24d Xu L. Shao Z. Wang L. Xiao J. Org. Lett. 2014; 16: 796
    • 24e Shao Z. Wang L. Xu L. Zhao H. Xiao J. RSC Adv. 2014; 4: 53188
    • 24f Dong H. Xu L. Li S.-S. Wang L. Shao C.-L. Xiao J. ACS Comb. Sci. 2016; 18: 604
    • 24g Guan B.-T. Wang B. Nishiura M. Hou Z. Angew. Chem. Int. Ed. 2013; 52: 4418
    • 24h Sun Q. Xie PP. Yuan D. Xia YZ. Yao YM. Chem. Commun. 2017; 53: 7401

      Selected examples:
    • 25a Qian B. Guo S. Shao J. Zhu Q. Yang L. Xia C. Huang H. J. Am. Chem. Soc. 2010; 132: 3650
    • 25b Rueping M. Tolstoluzhsky N. Org. Lett. 2011; 13: 1095
    • 25c Li Y. Guo F. Zha Z. Yang Z. Chem. Asian J. 2013; 8: 534
    • 25d Qian B. Xie P. Xie Y. Huang H. Org. Lett. 2011; 13: 2580
    • 25e Yan Y. Xu K. Fang Y. Wang Z. J. Org. Chem. 2011; 76: 6849
    • 25f Lai S. Ren X. Zhao J. Tang Z. Li G. Tetrahedron Lett. 2016; 57: 2957
    • 26a Liu J.-Y. Niu H.-Y. Wu S. Qu G.-R. Guo H.-M. Chem. Commun. 2012; 48: 9723
    • 26b Qian B. Yang L. Huang H. Tetrahedron Lett. 2013; 54: 711
    • 27a Sloan KB. Koch SA. M. J. Heterocycl. Chem. 1985; 22: 429
    • 27b Muddala NP. Nammalwar B. Bunce RA. RSC Adv. 2015; 5: 28389
    • 27c Zhang Y. Ao YF. Huang ZT. Wang DX. Wang MX. Zhu J. Angew. Chem. Int. Ed. 2016; 55: 5282
    • 27d Chen T. Cai C. New J. Chem. 2017; 41: 2519
    • 28a Beisel T. Kirchner J. Kaehler T. Knauer J. Soltani Y. Manolikakes G. Org. Biomol. Chem. 2016; 14: 5525
    • 28b Liu M. Chen X. Chen T. Yin S.-F. Org. Biomol. Chem. 2017; 15: 2507