Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(23): 4668-4682
DOI: 10.1055/s-0037-1609563
DOI: 10.1055/s-0037-1609563
paper
N-Heterocycle-Triggered MCRs: An Approach to the Concise Synthesis of Perfluoroalkylated Spiro-1,3-oxazines
The authors are grateful to the National Natural Science Foundation of China (NSFC) (Grant No. 21672138, 21542005, 21272152) for the financial support.Further Information
Publication History
Received: 07 May 2018
Accepted after revision: 29 June 2018
Publication Date:
08 August 2018 (online)
Abstract
Multicomponent reactions involving methyl perfluoroalk-2-ynoates initiated by N-heterocycles (quinoline, isoquinoline, and benzothiazole) in the presence of isatins and diaryl 1,2-diketones allowed efficient access to trifluoromethyl- or other perfluoroalkyl-substituted spiro-1,3-oxazine derivatives. This facile transformation is regioselective and proceeded smoothly through a 1,4-dipolar intermediate under mild conditions, affording the products in good to excellent yields.
Key words
multicomponent reaction (MCR) - N-heterocycle - 1,4-dipole - perfluoroalkyl-substituted - spiro-oxazino derivativesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609563.
- Supporting Information
-
References
- 1a Marson CM. Chem. Soc. Rev. 2011; 40: 5514
- 1b Ding ZG. Zhao JY. Li MG. Huang R. Li QM. Cui XL. Zhu HJ. Wen ML. J. Nat. Prod. 2012; 75: 1994
- 1c Kaminski K. Obniska J. Dybala M. Eur. J. Med. Chem. 2008; 43: 53
- 1d Borrero NV. Aponick A. J. Org. Chem. 2012; 77: 8410
- 2a Saragi TP. I. Spehr T. Siebert A. Lieker TF. Salbeck J. Chem. Rev. 2007; 107: 1011
- 2b Berkovic G. Krongauz V. Weiss V. Chem. Rev. 2000; 100: 1741
- 2c Yuan L. Lin WY. Zheng KB. Zhu SS. Acc. Chem. Res. 2013; 46: 1462
- 2d Chen XQ. Pradhan T. Wang FJ. Kim S. Yoon J. Chem. Rev. 2011; 112: 1910
- 2e Lee CK. Davis DA. White SR. Moore JS. Sottos NR. Braun PV. J. Am. Chem. Soc. 2010; 132: 16107
- 2f Tomasulo M. Sortino S. White AJ. P. Raymo FM. J. Org. Chem. 2005; 70: 8180
- 3a Nair V. Deepthi A. Ashok D. Paul AE. Raveendran RR. Tetrahedron 2014; 70: 3085
- 3b Yavari I. Mirzaei A. Moradi L. Khalili G. Tetrahedron Lett. 2010; 51: 396
- 3c Yavari I. Seyfi S. Hossaini Z. Tetrahedron Lett. 2010; 51: 2193
- 3d Yadav JS. Reddy BV. S. Yadav NN. Gupta MK. Sridhar B. J. Org. Chem. 2008; 73: 6857
- 3e Bhunia A. Roy T. Pachfule P. Rajamohanan PR. Biju AT. Angew. Chem. Int. Ed. 2013; 52: 10040
- 3f Nair V. Devipriya S. Suresh E. Tetrahedron 2008; 64: 3567
- 3g Nair V. Sreekanth AR. Abhilash NP. Biju AT. N. Varma L. Viji S. Mathew S. ARKIVOC 2005; (xi): 178
- 3h Zhang LJ. Yan CG. Mol. Divers. 2014; 18: 787
- 3i Zhang J. Yan CG. Tetrahedron 2015; 71: 6681
- 3j Nair V. Sreekanth AR. Biju AT. Rath NP. Tetrahedron Lett. 2003; 44: 729
- 3k Nair V. Devipriya S. Eringathodi S. Tetrahedron Lett. 2007; 48: 3667
- 3l Yavari I. Hossaini Z. Sabbaghan M. Darjani MG. Monatsh. Chem. 2007; 138: 677
- 3m Teimouri MB. Ahmadian TA. S. Heravi MR. P. Bazhrang R. Tetrahedron 2009; 65: 8120
- 3n Esmaeili AA. Nazer M. Synlett 2009; 2119
- 3o Wang GW. Li JX. Org. Biomol. Chem. 2006; 4: 4063
- 4a Chen P. Liu G. Synthesis 2013; 45: 2919
- 4b Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
- 4c Nie J. Guo H. Cahard D. Ma J. Chem. Rev. 2011; 111: 455
- 4d Zeng Y. Zhang L. Zhao Y. Ni C. Zhao J. Hu J. J. Am. Chem. Soc. 2013; 135: 2955
- 4e He Z. Zhang R. Hu M. Li L. Ni C. Hu J. Chem. Sci. 2013; 4: 3478
- 4f Mu X. Wu T. Wang HY. Guo YL. Liu G. J. Am. Chem. Soc. 2012; 134: 878
- 4g Chen C. Chu L. Qing F. J. Am. Chem. Soc. 2012; 134: 12454
- 4h Zhu R. Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
- 4i Mu X. Chen S. Zhen X. Liu G. Chem. Eur. J. 2011; 17: 6039
- 4j Chu L. Qing FL. J. Am. Chem. Soc. 2012; 134: 1298
- 5a Badiang JG. Aube J. J. Org. Chem. 1996; 61: 2484
- 5b Khumtaveeporn K. Alper H. J. Org. Chem. 1995; 60: 8142
- 5c Larksarp C. Alper H. J. Org. Chem. 1999; 64: 4152
- 5d Basheer A. Rappoport Z. J. Org. Chem. 2006; 71: 9743
- 6a Ihmels H. Mattay J. May F. Thomas L. Org. Biomol. Chem. 2013; 11: 5184
- 6b Copley GJ. Gillmore G. Crisman J. Kodis G. Gray CL. Cherry BR. Sherman BD. Liddell PA. Paquette MM. Kelbauskas L. Frank NL. Moore AL. T. Moore A. Gust D. J. Am. Chem. Soc. 2014; 136: 1199
- 6c Zou Q. Li X. Zhou J. Bai K. Ågren H. Dyes Pigm. 2014; 107: 174
- 7a Shirinian VZ. M. Krayushkin MD. Nikalin M. Shimkin AA. Vorontsova LG. Starikova ZA. ARKIVOC 2005; (vii): : 72
- 7b Chen XY. Wang JL. Lin XF. Wu Q. Tetrahedron 2016; 72: 3318
- 7c Wang JL. Chen XY. Wu Q. Lin XF. Adv. Synth. Catal. 2014; 356: 999
- 7d Noto N. Miyazawa K. Koike T. Akita M. Org. Lett. 2015; 17: 3710
- 7e Rane BS. M. Kazi AS. Bagul M. Shelar DP. Toche RB. Jachak MN. J. Fluoresc. 2010; 20: 415
- 7f Siddiqui IR. Srivastava A. Rai P. Srivastava A. Srivastava A. J. Heterocycl. Chem. 2015; 52: 1415
- 7g Gong H. Sun J. Yan CG. Tetrahedron 2014; 70: 6641
- 7h Sun J. Gong H. Yan CG. Tetrahedron 2013; 69: 10235
- 8 For a recent review, see: Sun XC. Han J. Chen J. Zhang H. Cao WG. Chem. Rec. 2016; 16: 907
- 9 4k; Unit cell parameters: a: 10.592(5)Å b 26.088(11)Å c 9.096(4)Å, α 90.00° β 96.425(5)° γ 90.00°; space group: P 21/c (14). CCDC 1525130 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 10 5k; Unit cell parameters: a: 11.896(8)Å b 15.726(11)Å c 13.275(9)Å, α 90.00° β 91.321(9)° γ 90.00°; space group: P 21/c (14). CCDC 1525127 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 11 Hamper BC. Org. Synth. 1992; 70: 246
For some selected examples:
For selected reviews, see:
For some recent examples, see: