Synthesis 2018; 50(17): 3436-3444
DOI: 10.1055/s-0037-1609732
paper
© Georg Thieme Verlag Stuttgart · New York

Brønsted Acid Catalyzed Dehydrative Arylation of 4-Indolylmeth­anols with Indoles: Efficient Access to Indolyl-Substituted Triarylmethanes

Jin-Xi Liu
,
Zi-Qi Zhu
,
Lei Yu
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn   Email: furan@163.com
,
Bai-Xiang Du*
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn   Email: furan@163.com
,
Guang-Jian Mei*
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn   Email: furan@163.com
,
Feng Shi  *
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn   Email: furan@163.com
› Author Affiliations
We are much appreciated for the financial support from NSFC (21772069 and 21702077), the Natural Science Foundation of Jiangsu Province (BK20160003 and BK20170227), TAPP, and Six Kinds of Talents Project of Jiangsu Province (SWYY-025).
Further Information

Publication History

Received: 13 March 2018

Accepted after revision: 30 March 2018

Publication Date:
29 May 2018 (online)


Abstract

A Brønsted acid catalyzed dehydrative arylation of 4-indolylmethanols with indoles has been established, leading to a series of indolyl-substituted triarylmethanes in good to excellent yields (up to 97% yield). In addition, in this Brønsted acid catalyzed dehydration process, the only byproduct was water. Accordingly, this approach can be considered to have high atom economy and to be environmentally friendly. This approach not only provides a useful strategy for the synthesis of structurally diversified indolyl-substituted triarylmethanes, but also represents the first example of a 4-indolylmethanol-involved reaction, which will advance the chemistry of indolylmethanols.

Supporting Information

 
  • References

  • 1 These authors contributed equally to the work.

    • For selected reviews, see:
    • 2a Nair V. Thomas S. Mathew SC. Abhilash KG. Tetrahedron 2006; 62: 6731
    • 2b Shiri M. Zolfigol MA. Kruger HG. Tanbakouchian Z. Chem. Rev. 2010; 110: 2250
    • 2c Li Z. Wang J. Zhao J. Zhao C. Liu X. Yu X. Youji Huaxue 2014; 34: 485
    • 2d Mondal S. Panda G. RSC Adv. 2014; 4: 28317
    • 2e Nambo M. Crudden CM. ACS Catal. 2015; 5: 4734
    • 3a Fang H. Tong WD. Branham WS. Moland CL. Dial SL. Hong HX. Xie Q. Perkins R. Owens W. Sheehan DM. Chem. Res. Toxicol. 2003; 16: 1338
    • 3b Su Y.-H. Chiang LW. Jeng KC. Huang H.-L. Chen J.-T. Lin W.-J. Huang C.-W. Yu C.-S. Bioorg. Med. Chem. Lett. 2011; 21: 1320
  • 4 Parai MK. Panda G. Chaturvedi V. Manju YK. Sinha S. Bioorg. Med. Chem. Lett. 2008; 18: 289
  • 5 Ellsworth BA. Ewing WR. Jurica E. US 20110082165, 2011
    • 6a Cho SD. Yoon K. Chintharlapalli S. Abdelrahim M. Lei P. Hamilton S. Khan S. Ramaiah SK. Safe S. Cancer Res. 2007; 67: 674
    • 6b Paira P. Hazra A. Kumar S. Paira R. Sahu KB. Naskar S. Saha P. Mondal S. Maity A. Banerjee S. Mondal NB. Bioorg. Med. Chem. Lett. 2009; 19: 4786
    • 6c Kamal A. Srikanth YV. V. Khan MN. A. Shaik TB. Ashraf M. Bioorg. Med. Chem. Lett. 2010; 20: 5229
    • 6d Reddy BV. S. Rajeswari N. Sarangapani M. Prashanthi Y. Ganji RJ. Addlagatta A. Bioorg. Med. Chem. Lett. 2012; 22: 2460

      For selected examples, see:
    • 7a Lin S. Lu X. J. Org. Chem. 2007; 72: 9757
    • 7b Xia Y. Hu F. Liu Z. Qu P. Ge R. Ma C. Zhang Y. Wang J. Org. Lett. 2013; 15: 1784
    • 7c Ji X. Huang T. Wu W. Liang F. Cao S. Org. Lett. 2015; 17: 5096
    • 7d Xia Y. Chen L. Qu P. Ji G. Feng S. Xiao Q. Zhang Y. Wang J. J. Org. Chem. 2016; 81: 10484
    • 7e Liao J.-Y. Ni Q. Zhao Y. Org. Lett. 2017; 19: 4074
    • 7f Xia Y. Hu F. Xia Y. Liu Z. Ye F. Zhang Y. Wang J. Synthesis 2017; 49: 1073
    • 7g Zhou T. Li S. Huang B. Li C. Zhao Y. Chen J. Chen A. Xiao Y. Liu L. Zhang J. Org. Biomol. Chem. 2017; 15: 4941
    • 7h Sun F.-L. Zheng X.-J. Gu Q. He Q.-L. You S.-L. Eur. J. Org. Chem. 2010; 47
    • 7i Taylor BL. H. Harris MR. Jarvo ER. Angew. Chem. Int. Ed. 2012; 51: 7790
    • 7j Lou Y. Cao P. Jia T. Zhang Y. Wang M. Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
    • 7k Lu S. Song X. Poh SB. Yang H. Wong M.-W. Zhao Y. Chem. Eur. J. 2017; 23: 2275

      For selected reviews, see:
    • 8a Akiyama T. Chem. Rev. 2007; 107: 5744
    • 8b Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
    • 8c Terada M. Chem. Commun. 2008; 4097
    • 8d Terada M. Synthesis 2010; 1929
    • 8e Yu J. Shi F. Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
    • 8f Song J. Chen D.-F. Gong L.-Z. Natl. Sci. Rev. 2017; 4: 381

      For selected reviews, see:
    • 9a Bandini M. Tragni M. Org. Biomol. Chem. 2009; 7: 1501
    • 9b Emer E. Sinisi R. Capdevila MG. Petruzziello D. De Vincentiis F. Cozzi PG. Eur. J. Org. Chem. 2011; 647
    • 9c Sundararaju B. Achard M. Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
    • 9d Kumar R. Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121
    • 9e Naredla RR. Klumpp DA. Chem. Rev. 2013; 113: 6905
    • 9f Chen L. Yin X.-P. Wang C.-H. Zhou J. Org. Biomol. Chem. 2014; 12: 6033
    • 9g Dryzhakov M. Richmond E. Moran J. Synthesis 2016; 48: 935
  • 10 Constable DJ. C. Dunn PJ. Hayler JD. Humphrey GR. Leazer JL. Linderman RJ. Lorenz K. Manley J. Pearlman BA. Wells A. Zaks A. Zhang T.-Y. Green Chem. 2007; 9: 411

    • For selected examples, see:
    • 11a Xiao J. Zhao K. Loh TP. Chem. Asian J. 2011; 6: 2890
    • 11b Xiao J. Org. Lett. 2012; 14: 1716
    • 11c Xiao J. Zhao K. Loh TP. Chem. Commun. 2012; 48: 3548
    • 11d Chen L. Zhu F. Wang C.-H. Zhou J. RSC Adv. 2013; 3: 19880
    • 11e Krautwald S. Sarlah D. Schafroth MA. Carreira EM. Science (Washington, D. C.) 2013; 340: 1065
    • 11f Song J. Guo C. Adele A. Yin H. Gong L.-Z. Chem. Eur. J. 2013; 19: 3319
    • 11g Tao Z.-L. Zhang W.-Q. Chen D.-F. Adele A. Gong L.-Z. J. Am. Chem. Soc. 2013; 135: 9255
    • 11h Wang P.-S. Zhou X.-L. Gong L.-Z. Org. Lett. 2014; 16: 976
    • 11i Su Y.-L. Han Z.-Y. Li Y.-H. Gong L.-Z. ACS Catal. 2017; 7: 7917
    • 11j Bian C.-Y. Li D. Shi Q. Mei G.-J. Shi F. Synthesis 2017; 50: 295

      For related reviews on indolylmethanols, see:
    • 12a Palmieri A. Petrini M. Shaikh RR. Org. Biomol. Chem. 2010; 8: 1259
    • 12b Kataja AO. Masson G. Tetrahedron 2014; 70: 8783
    • 12c Wang L. Chen Y. Xiao J. Asian J. Chem. 2014; 3: 1036
    • 12d Wu H. He Y.-P. Shi F. Synthesis 2015; 47: 1990
    • 12e Mei G.-J. Shi F. J. Org. Chem. 2017; 82: 7695

    • For related reviews on the generation of carbocation from alcohols:
    • 12f Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013. 1st ed. 729-755
    • 12g Baeza A. Najera C. Synthesis 2014; 46: 25
    • 12h Ortiz R. Herrera RP. Molecules 2017; 22: 574

      For selected examples on substitutions of 3-indolylmethanols, see:
    • 13a Guo Q.-X. Peng Y.-G. Zhang J.-W. Song L. Feng Z. Gong L.-Z. Org. Lett. 2009; 11: 4620
    • 13b Duan Y. Chen M.-W. Ye Z.-S. Wang D.-S. Chen Q.-A. Zhou Y.-G. Chem. Eur. J. 2011; 17: 7193
    • 13c Guo C. Song J. Huang J.-Z. Chen P.-H. Luo S.-W. Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 1046
    • 13d Xu BA. Guo Z.-L. Jin W.-Y. Wang Z.-P. Peng Y.-G. Guo Q.-X. Angew. Chem. Int. Ed. 2012; 51: 1059
    • 13e Guo Z.-L. Xue J.-H. Fu L.-N. Zhang S.-E. Guo Q.-X. Org. Lett. 2014; 16: 6472
    • 13f Liu Y. Zhang H.-H. Zhang Y.-C. Jiang Y. Shi F. Tu S.-J. Chem. Commun. 2014; 50: 12054
    • 13g Tan W. Du B.-X. Li X. Zhu X. Shi F. Tu S.-J. J. Org. Chem. 2014; 79: 4635
    • 13h Xu B. Shi L.-L. Zhang Y.-Z. Wu Z.-J. Fu L.-N. Luo C.-Q. Zhang L.-X. Peng Y.-G. Guo Q.-X. Chem. Sci. 2014; 5: 1988
    • 13i Zhou L.-J. Zhang Y.-C. Zhao J.-J. Shi F. Tu S.-J. J. Org. Chem. 2014; 79: 10390
    • 13j Li X. Tan W. Gong Y.-X. Shi F. J. Org. Chem. 2015; 80: 1841
    • 13k Sun X.-X. Du B.-X. Zhang H.-H. Ji L. Shi F. ChemCatChem 2015; 7: 1211
    • 13l Wang X.-X. Liu J. Xu L.-B. Hao Z.-H. Wang L. Xiao J. RSC Adv. 2015; 5: 101713
    • 13m Wen H. Wang L. Xu L.-B. Hao Z.-H. Shao C.-L. Wang C.-Y. Xiao J. Adv. Synth. Catal. 2015; 357: 4023
    • 13n Xiao J. Wen H. Wang L. Xu L. Hao Z. Shao C.-L. Wang C.-Y. Green Chem. 2016; 18: 1032

      For selected examples on [3+2] cyclizations of 3-indolylmethanols, see:
    • 14a Yokosaka T. Nakayama H. Nemoto T. Hamada Y. Org. Lett. 2013; 15: 2978
    • 14b Dong J. Pan L. Xu X. Liu Q. Chem. Commun. 2014; 50: 14797
    • 14c Tan W. Li X. Gong Y.-X. Ge M.-D. Shi F. Chem. Commun. 2014; 50: 15901
    • 14d Zhang C. Zhang L.-X. Qiu Y. Xu B. Zong Y. Guo Q.-X. RSC Adv. 2014; 4: 6916
    • 14e Lebee C. Kataja AO. Blanchard F. Masson G. Chem. Eur. J. 2015; 21: 8399
    • 14f Shi F. Zhang H.-H. Sun X.-X. Liang J. Fan T. Tu S.-J. Chem. Eur. J. 2015; 21: 3465
    • 14g Fan T. Zhang H.-H. Li C. Shen Y. Shi F. Adv. Synth. Catal. 2016; 358: 2017
    • 14h Zhang H.-H. Zhu Z.-Q. Fan T. Liang J. Shi F. Adv. Synth. Catal. 2016; 358: 1259

      For selected examples on [3+3] cyclizations of 3-indolylmethanols, see:
    • 15a Hao W.-J. Wang S.-Y. Ji S.-J. ACS Catal. 2013; 3: 2501
    • 15b Huang J.-Z. Luo S.-W. Gong L.-Z. Acta Chim. Sin. 2013; 71: 879
    • 15c Dai W. Lu H. Li X. Shi F. Tu S.-J. Chem. Eur. J. 2014; 20: 11382
    • 15d Shi F. Zhu R.-Y. Dai W. Wang C.-S. Tu S.-J. Chem. Eur. J. 2014; 20: 2597
    • 15e Liao Y. Bai M. Yu S. Zhang M. Hu F. Xu X. Yuan W. Zhang X. J. Heterocycl. Chem. 2017; 54: 1311

      For selected examples on [4+3] cyclizations of 3-indolylmethanols, see:
    • 16a Han X.-P. Li H. Hughes RP. Wu J. Angew. Chem. Int. Ed. 2012; 51: 10390
    • 16b Gong W.-C. Liu Y. Zhang J. Jiao Y.-D. Xue J.-J. Li Y. Chem. Asian J. 2013; 8: 546
    • 16c Liu J. Wang L. Wang X. Xu L. Hao Z. Xiao J. Org. Biomol. Chem. 2016; 14: 11510

      For selected examples on substitutions of 2-indolylmethanols, see:
    • 17a Zhong X. Li Y. Han F.-S. Chem. Eur. J. 2012; 18: 9784
    • 17b Yin Q. Wang S.-G. You S.-L. Org. Lett. 2013; 15: 2688
    • 17c Qi S. Liu C.-Y. Ding J.-Y. Han F.-S. Chem. Commun. 2014; 50: 8605
    • 17d Liu CY. Han F.-S. Chem. Commun. 2015; 51: 11844
    • 17e Zhong X. Qi S. Li Y. Zhang J. Han F.-S. Tetrahedron 2015; 71: 3734

      For selected examples on cyclizations of 2-indolylmethanols, see:
    • 18a Granger BA. Jewett IT. Butler JD. Hua B. Knezevic CE. Parkinson EI. Hergenrother PJ. Martin SF. J. Am. Chem. Soc. 2013; 135: 12984
    • 18b Zhong X. Li Y. Zhang J. Zhang W.-X. Wang S.-X. Han F.-S. Chem. Commun. 2014; 50: 11181
    • 18c Zhong X. Li Y. Zhang J. Han F.-S. Org. Lett. 2015; 17: 720
    • 18d Bera K. Schneider C. Chem. Eur. J. 2016; 22: 7074
    • 18e Bera K. Schneider C. Org. Lett. 2016; 18: 5660
    • 19a Li C. Zhang H.-H. Fan T. Shen Y. Wu Q. Shi F. Org. Biomol. Chem. 2016; 14: 6932
    • 19b Sun X.-X. Zhang H.-H. Li G.-H. He Y.-Y. Shi F. Chem. Eur. J. 2016; 22: 17526
    • 19c Zhu Z.-Q. Shen Y. Sun X.-X. Tao J.-Y. Liu J.-X. Shi F. Adv. Synth. Catal. 2016; 358: 3797
    • 19d He Y.-Y. Sun X.-X. Li G.-H. Mei G.-J. Shi F. J. Org. Chem. 2017; 82: 2462
    • 19e Shen Y. Zhu Z.-Q. Liu J.-X. Yu L. Du B.-X. Mei G.-J. Shi F. Synthesis 2017; 49: 4025
    • 19f Zhang H.-H. Wang C.-S. Li C. Mei G.-J. Li Y. Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
    • 19g Zhu Z.-Q. Shen Y. Liu J.-X. Tao J.-Y. Shi F. Org. Lett. 2017; 19: 1542
  • 20 CCDC 1814393 (3ad) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.