Subscribe to RSS
DOI: 10.1055/s-0037-1609843
Recent Advances in Water-Tolerance in Frustrated Lewis Pair Chemistry
We acknowledge the University of Manchester, the Royal Society of Chemistry (V.F. - Mobility Research grant) and the EPSRC (M.J.I. - grant numbers EP/K03099X/1 and EP/M023346/1) for financial support.Publication History
Received: 30 January 2018
Accepted after revision: 27 February 2018
Publication Date:
29 March 2018 (online)
Abstract
A water-tolerant frustrated Lewis pair (FLP) combines a sterically encumbered Lewis acid and Lewis base that in synergy are able to activate small molecules even in the presence of water. The main challenge introduced by water comes from its reversible coordination to the Lewis acid which causes a marked increase in the Brønsted acidity of water. Indeed, the oxophilic Lewis acids typically used in FLP chemistry form water adducts whose acidity can be comparable to that of strong Brønsted acids such as HCl, thus they can protonate the Lewis base component of the FLP. Irreversible proton transfer quenches the reactivity of both the Lewis acid and the Lewis base, precluding small molecule activation. This short review discusses the efforts to overcome water-intolerance in FLP systems, a topic that in less than five years has seen significant progress.
1 Introduction
2 Water-Tolerance (or Alcohol-Tolerance) in Carbonyl Reductions
3 Water-Tolerance with Stronger Bases
4 Water-Tolerant Non-Boron-Based Lewis Acids in FLP Chemistry
5 Conclusions
-
References
- 1a Spikes GH. Fettinger JC. Power PP. J. Am. Chem. Soc. 2005; 127: 12232
- 1b Welch GC. San Juan JJ. Nasuda JD. Stephan DW. Science (Washington, D. C.) 2006; 314: 1124
- 2a Frustrated Lewis Pairs I, Uncovering and Understanding . Stephan DW. Erker G. Springer; Heidelberg: 2013
- 2b Frustrated Lewis Pairs II, Expanding the Scope . Stephan DW. Erker G. Springer; Heidelberg: 2013
- 2c Scott DJ. Fuchter MJ. Ashley AE. Chem. Soc. Rev. 2017; 46: 5689
- 2d Stephan DW. Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400
- 2e Paradies J. Synlett 2013; 24: 777
- 2f Stephan DW. Science (Washington, D. C.) 2016; 354: aaf7229
- 2g Stephan DW. J. Am. Chem. Soc. 2015; 137: 10018
- 3a Shi L. Zhou Y.-G. ChemCatChem 2015; 7: 54
- 3b Meng W. Feng X. Du H. Acc. Chem. Res. 2018; 51: 191
- 3c Feng X. Du H. Tetrahedron Lett. 2014; 55: 6959
- 4a Parks DJ. Piers WE. J. Am. Chem. Soc. 1996; 118: 9440
- 4b Blackwell JM. Foster KL. Beck VH. Piers WE. J. Org. Chem. 1999; 64: 4887
- 4c Parks DJ. Blackwell JM. Piers WE. J. Org. Chem. 2000; 65: 3090
- 4d Blackwell JM. Sonmor ER. Scoccitti T. Piers WE. Org. Lett. 2000; 2: 3921
- 4e Rendler S. Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 5997
- 4f Hermeke J. Mewald M. Oestreich M. J. Am. Chem. Soc. 2013; 135: 17537
- 4g Houghton AF. Hurmalainen J. Mansikkamäki A. Piers WE. Tuononen HM. Nat. Chem. 2014; 6: 983
- 5a Chase PA. Welch GC. Jurca T. Stephan DW. Angew. Chem. Int. Ed. 2007; 46: 8050
- 5b Welch GC. Stephan DW. J. Am. Chem. Soc. 2007; 129: 1880
- 5c Spies P. Schwendemann S. Lange S. Kehr G. Fröhlich R. Erker G. Angew. Chem. Int. Ed. 2008; 47: 7543
- 6 Thomson JW. Hatnean JA. Hastie JJ. Pasternak A. Stephan DW. Chase PA. Org. Process Res. Dev. 2013; 17: 1287
- 7 Das S. Pati SK. Chem. Eur. J. 2017; 23: 1078
- 8a Bergquist C. Bridgewater BM. Harlan CJ. Norton JR. Friesner RA. Parkin G. J. Am. Chem. Soc. 2000; 122: 10581
- 8b Di Saverio A. Focante F. Camurati I. Resconi L. Beringhelli T. D’Alfonso G. Donghi D. Maggioni D. Mercandelli P. Sironi A. Inorg. Chem. 2005; 44: 5030
- 8c Lathem AP. Heiden ZM. Dalton Trans. 2017; 46: 5976
- 9a Lindqvist M. Sarnela N. Sumerin V. Chernichenko K. Leskela M. Repo T. Dalton Trans. 2012; 41: 4310
- 9b Longobardi LE. Tang C. Stephan DW. Dalton Trans. 2014; 43: 15723
- 10 Spies P. Erker G. Kehr G. Bergander K. Frohlich R. Grimme S. Stephan DW. Chem. Commun. 2007; 5072
- 11 Mahdi T. Stephan DW. J. Am. Chem. Soc. 2014; 136: 15809
- 12 Scott DJ. Fuchter MJ. Ashley AE. J. Am. Chem. Soc. 2014; 136: 15813
- 13 Hounjet LJ. Bannwarth C. Garon CN. Caputo CB. Grimme S. Stephan DW. Angew. Chem. Int. Ed. 2013; 52: 7492
- 14 Morris RH. Chem. Rev. 2016; 116: 8588
- 15 Scott DJ. Simmons TR. Lawrence EJ. Wildgoose GG. Fuchter MJ. Ashley AE. ACS Catal. 2015; 5: 5540
- 16 Gyömöre A. Bakos M. Földes T. Pápai I. Domján A. Soós T. ACS Catal. 2015; 5: 5366
- 17 Eros G. Mehdi H. Pápai I. Rokob T. Király P. Tárkányi G. Soós T. Angew. Chem. Int. Ed. 2010; 49: 6559
- 18 Eros G. Nagy K. Mehdi H. Pápai I. Nagy P. Király P. Tárkányi G. Soós T. Chem. Eur. J. 2012; 18: 574
- 19 Bakos M. Gyömöre A. Domján A. Soós T. Angew. Chem. Int. Ed. 2017; 56: 5217
- 20 Ghattas G. Bizzarri C. Hölscher M. Langanke J. Gurtler C. Leitnerb W. Subhani MA. Chem. Commun. 2017; 53: 3205
- 21 Fasano V. Radcliffe JE. Ingleson MJ. ACS Catal. 2016; 6: 1793
- 22a Doyle MP. West CT. J. J. Org. Chem. 1975; 40: 3835
- 22b Chen Q. Klare HF. T. Oestreich M. J. Am. Chem. Soc. 2016; 138: 7868
- 23 Fasano V. Ingleson MJ. Chem. Eur. J. 2017; 23: 2217
- 24 Tiddens MR. Gebbink RJ. M. K. Otte M. Org. Lett. 2016; 18: 3714
- 25 Pan Y. Chen C. Xu X. Zhao H. Han J. Li H. Xu L. Fan Q. Xiao J. Green Chem. 2018; 20: 403
- 26 Wilkins LC. Howard JL. Burger S. Frentzel-Beyme L. Browne DL. Melen RL. Adv. Synth. Catal. 2017; 359: 2580
- 27 Dorkó E. Szabó M. Kótai B. Pápai I. Domján A. Soós T. Angew. Chem. Int. Ed. 2017; 56: 9512
- 28 Ashley AE. Herrington TJ. Wildgoose GG. Zaher H. Thompson AL. Rees NH. Kramer T. O’Hare D. J. Am. Chem. Soc. 2011; 133: 14727
- 29 Scott DJ. Fuchter MJ. Ashley AE. Angew. Chem. Int. Ed. 2014; 53: 10218
- 30 Zhao H. Reibenspies JH. Gabbaï FP. Dalton Trans. 2013; 42: 608
- 31 Dryzhakov M. Hellal M. Wolf E. Falk FC. Moran J. J. Am. Chem. Soc. 2015; 137: 9555
- 32 Dryzhakov M. Moran J. ACS Catal. 2016; 6: 3670
- 33 Fasano V. Radcliffe JE. Ingleson MJ. Organometallics 2017; 36: 1623
- 34 For a selected example of a borane with higher Lewis acidity than B(C6F5)3 see: Körte LA. Schwabedissen J. Soffner M. Blomeyer S. Reuter CG. Vishnevskiy YV. Neumann B. Stammler H.-G. Mitzel NW. Angew. Chem. Int. Ed. 2017; 56: 8578
- 35a Dureen MA. Stephan DW. J. Am. Chem. Soc. 2009; 131: 8396
- 35b Ménard C. Stephan DW. Angew. Chem. Int. Ed. 2012; 51: 8272
- 35c Ménard C. Tran L. Stephan DW. Dalton Trans. 2013; 42: 13685
- 35d Chen J. Chen EY.-X. Dalton Trans. 2016; 45: 6105
- 35e Martinewski K. Holtrichter-Rößmann T. Rösener C. Hepp A. Wurthwein E.-U. Uhl W. Chem. Eur. J. 2017; 23: 6129
- 35f Xu M. Possart J. Waked AE. Roy J. Uhl W. Stephan DW. Phil. Trans. R. Soc. A 2017; 375: 20170014 DOI: 10.1098/rsta.2017.0014
- 35g Uhl W. Willeke M. Hengesbach F. Hepp A. Layh M. Organometallics 2016; 35: 3701
- 35h Backs J. Lange M. Possart J. Wollschläger A. Mück-Lichtenfeld C. Uhl W. Angew. Chem. Int. Ed. 2017; 56: 3094
- 36a Frey GD. Lavallo V. Donnadieu B. Schoeller WW. Bertrand G. Science (Washington, D. C.) 2007; 316: 439
- 36b Ines B. Holle S. Goddard R. Alcarazo M. Angew. Chem. Int. Ed. 2010; 49: 8389
- 36c Runyon JW. Steinhof O. Rasika Dias HV. Calabrese JC. Marshall WJ. Arduengo AJ. III. Aust. J. Chem. 2011; 64: 1165
- 36d Boone MP. Stephan DW. J. Am. Chem. Soc. 2013; 135: 8508
- 36e Clark ER. Ingleson MJ. Organometallics 2013; 32: 6712
- 36f Kalz KF. Brinkmeier A. Dechert S. Mata RA. Meyer F. J. Am. Chem. Soc. 2014; 136: 16626
- 36g Auth J. Padevet J. Mauleon P. Pfaltz A. Angew. Chem. Int. Ed. 2015; 54: 9542
- 36h Radcliffe JE. Dunsford JJ. Cid J. Fasano V. Ingleson MJ. Organometallics 2017; 36: 4952
- 37a Naidu VR. Ni S. Franzen J. ChemCatChem 2015; 7: 1896
- 37b Zhou J. Cao LL. Liu L. Stephan DW. Dalton Trans. 2017; 46: 9334
- 37c Follet E. Mayer P. Stephenson DS. Ofial AR. Berionni G. Chem. Eur. J. 2017; 23: 7422
- 38 Brauman JI. Archie WC. Jr. J. Am. Chem. Soc. 1970; 92: 5981
- 39 Mosaferi E. Ripsman D. Stephan DW. Chem. Commun. 2016; 52: 8291
- 40a Lambert JB. Kania L. Zhang S. Chem. Rev. 1995; 95: 1191
- 40b Reed CA. Acc. Chem. Res. 1998; 31: 325
- 40c Klare HF. T. Oestreich M. Dalton Trans. 2010; 39: 9176
- 41 Fasano V. Radcliffe JE. Curless LD. Ingleson MJ. Chem. Eur. J. 2017; 23: 187
- 42 Clark ER. Ingleson MJ. Angew. Chem. Int. Ed. 2014; 53: 11306
- 43 Fasano V. Curless LD. Radcliffe JE. Ingleson MJ. Angew. Chem. Int. Ed. 2017; 56: 9202
- 44 Scott DJ. Phillips NA. Sapsford JS. Deacy AC. Fuchter MJ. Ashley AE. Angew. Chem. Int. Ed. 2016; 55: 14738
- 45 Whittell GR. Balmond EI. Robertson AP. M. Patra SK. Haddow MF. Manners I. Eur. J. Inorg. Chem. 2010; 3967
- 46 Sapsford JS. Scott DJ. Allcock NJ. Fuchter MJ. Tighe CJ. Ashley AE. Adv. Synth. Catal. 2018; in press ; DOI: 10.1002/adsc.201701418
- 47 Caputo CB. Hounjet LJ. Dobrovetsky R. Stephan DW. Science (Washington, D. C.) 2013; 341: 1374
- 48a Stephan DW. Angew. Chem. Int. Ed. 2017; 56: 5984
- 48b Bayne JM. Stephan DW. Chem. Soc. Rev. 2016; 45: 765
- 49a Postle S. Podgorny V. Stephan DW. Dalton Trans. 2016; 45: 14651
- 49b LaFortune JH. W. Johnstone TC. Perez M. Winkelhaus D. Podgorny V. Stephan DW. Dalton Trans. 2016; 45: 18156
- 50 Fasano V. LaFortune JH. W. Bayne JM. Ingleson MJ. Stephan DW. Chem. Commun. 2018; 54: 662
- 51 Pan B. Gabbaï FP. J. Am. Chem. Soc. 2014; 136: 9564
- 52a Ke I.-S. Myahkostupov M. Castellano FN. Gabbaï FP. J. Am. Chem. Soc. 2012; 134: 15309
- 52b Wade CR. Broomsgrove AE. J. Aldridge S. Gabbaï FP. Chem. Rev. 2010; 110: 3958
- 53 For another work on water-tolerant Lewis acids not employed in FLP chemistry see: Kobayashi S. Ogawa C. Chem. Eur. J. 2006; 12: 5954
For recent reviews on FLP chemistry see:
For accounts of FLP chemistry in asymmetric catalysis see:
For pioneering studies on Si–H activation with B(C6F5)3 see:
For subsequent notable mechanistic studies see:
For pioneering studies on H2 activation with B(C6F5)3 see:
For Brønsted acidity of water–borane adduct see:
For synthesis and application of Al(C6F5)3 and derivatives in FLP chemistry see:
For the synthesis and application of Ga(C6F5)3, In(C6F5)3 and derivatives in FLP chemistry see:
For the application of carbon Lewis acids in FLP chemistry see:
For recent reviews on EPCs see:
For fluoride ion complexation and sensing using water-tolerant boranes see: