Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(17): 3387-3394
DOI: 10.1055/s-0037-1609844
DOI: 10.1055/s-0037-1609844
special topic
Photoredox-Catalyzed Radical Relay Reaction Toward Functionalized Vicinal Diamines
The National Natural Science Foundation of China (21472084, 21672098 and 21732003).Further Information
Publication History
Received: 03 March 2018
Accepted after revision: 09 April 2018
Publication Date:
20 June 2018 (online)
Published as part of the Special Topic Photoredox Methods and their Strategic Applications in Synthesis
Abstract
A strategy has been described to synthesize β,γ-diaminoketones. This strategy is enabled by photoredox-catalyzed and nitrogen-centered radical-triggered cascade reactions of styrenes, enamides, and O-acylhydroxylamines in DMSO. Four bonds (one C–C, one C–N, and two C–O) are constructed in a single operation. Various functionalized vicinal diamines have been furnished by the radical relay reaction.
Key words
photochemistry - ketones - nitrogen-centered radicals - cascade reactions - vicinal diaminesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609844.
- Supporting Information
-
References
- 1a Lucet D. LeGall T. Mioskowski C. Angew. Chem., Int. Ed. Engl. 1998; 37: 2580
- 1b Kotti SR. S. S. Timmons C. Li G. Chem. Biol. Drug. Des. 2006; 67: 101
- 1c Cardona F. Goti A. Nat. Chem. 2009; 1: 269
- 1d Viso A. de la Pradilla RF. García A. Flores A. Chem. Rev. 2005; 105: 3167
- 1e Viso A. de la Pradilla RF. Tortosa M. García A. Flores A. Chem. Rev. 2011; 111: 1
- 2a González-Sabín J. Rebolledo F. Gotor V. Chem. Soc. Rev. 2009; 38: 1916
- 2b Bennani YL. Hanessian S. Chem. Rev. 1997; 97: 3161
- 3a Lu C. Lu X. Org. Lett. 2002; 4: 4677
- 3b Cai QA. Zheng C. You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666
- 3c Volonterio A. de Arellano CR. Zanda M. J. Org. Chem. 2005; 70: 2161
- 3d Gao M. Yang Y. Wu Y.-D. Deng C. Shu W.-M. Zhang D.-X. Cao L.-P. She NF. Wu A.-X. Org. Lett. 2010; 12: 4026
- 3e Lee S.-J. Bae J.-Y. Cho C.-W. Eur. J. Org. Chem. 2015; 6495
- 3f Olimpieri F. Bellucci MC. Volonterio A. Zanda M. Eur. J. Org. Chem. 2009; 6179
- 4a Zhu Y. Cornwall RG. Du H. Zhao B. Shi Y. Acc. Chem. Res. 2014; 47: 3665
- 4b Martínez C. Muñiz K. Angew. Chem. Int. Ed. 2012; 51: 7031
- 4c Zhang H. Pu W. Xiong T. Li Y. Zhou X. Sun K. Liu Q. Zhang Q. Angew. Chem. Int. Ed. 2013; 52: 2529
- 4d Muñiz K. Martínez C. J. Org. Chem. 2013; 78: 2168
- 4e Röben C. Souto JA. Escudero-Adán EC. Muñiz K. Org. Lett. 2013; 15: 1008
- 4f Lishchynskyi A. Muñiz K. Chem. Eur. J. 2012; 18: 2212
- 4g Iglesias A. Pérez EG. Muñiz K. Angew. Chem. Int. Ed. 2010; 49: 8109
- 4h Danneman MW. Hong KB. Johnston JN. Org. Lett. 2015; 17: 2558
- 4i Röben C. Souto JA. González Y. Lishchynskyi A. Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478
- 4j Zhao B. Peng X. Cui S. Shi Y. J. Am. Chem. Soc. 2010; 132: 11009
- 4k Muñiz K. Barreiro L. Romero RM. Martínez C. J. Am. Chem. Soc. 2017; 139: 4354
- 4l Booker-Milburn KI. Guly DJ. Cox B. Procopiou PA. Org. Lett. 2003; 5: 3313
- 4m Olson DE. Su JY. Roberts DA. Du Bois J. J. Am. Chem. Soc. 2014; 136: 13506
- 4n Zhu Y. Shi Y. Chem. Eur. J. 2014; 20: 13901
- 4o Pei W. Wei H.-X. Chen D. Headley AD. Li G. J. Org. Chem. 2003; 68: 8404
- 5a Mizar P. Laverny A. El-Sherbini M. Farid U. Brown M. Malmedy F. Wirth T. Chem. Eur. J. 2014; 20: 9910
- 5b Sequeira FC. Turnpenny BW. Chemler SR. Angew. Chem. Int. Ed. 2010; 49: 6365
- 5c Shen K. Wang Q. Chem. Sci. 2015; 6: 4279
- 6 Souto JA. González Y. Iglesias A. Zian D. Lishchynskyi A. Muñiz K. Chem. Asian J. 2012; 7: 1103
- 7a Danneman MW. Hong KB. Johnston JN. Org. Lett. 2015; 17: 3806
- 7b Liu R.-H. Wei D. Han B. Yu W. ACS Catal. 2016; 6: 6525
- 7c Turnpenny BW. Chemler SR. Chem. Sci. 2014; 5: 1786
- 7d Streuff J. Hövelmann CH. Nieger M. Muñiz K. J. Am. Chem. Soc. 2005; 127: 14586
- 7e Ingalls EL. Sibbald PA. Kaminsky W. Michael FE. J. Am. Chem. Soc. 2013; 135: 8854
- 7f Muñiz K. Streuff J. Höevelmann CH. Núñez A. Angew. Chem. Int. Ed. 2007; 46: 7125
- 7g Kim HJ. Cho SH. Chang S. Org. Lett. 2012; 14: 1424
- 7h Hong KB. Johnston JN. Org. Lett. 2014; 16: 3804
- 7i Sibbald PA. Michael FE. Org. Lett. 2009; 11: 1147
- 8a Xiong T. Zhang Q. Chem. Soc. Rev. 2016; 45: 3069
- 8b Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
- 8c Kärkäs MD. ACS Catal. 2017; 7: 4999
- 9 An X.-D. Jiao Y.-Y. Zhang H. Gao Y. Yu S. Org. Lett. 2018; 20: 401
- 10a Fisher A. Mann A. Verma V. Thomas N. Mishra RK. Johnson RL. J. Med. Chem. 2006; 49: 307
- 10b Encinas L. O’Keefe H. Neu M. Remuiñán MJ. Patel AM. Guardia A. Davie CP. Pérez-Macías N. Yang H. Convery MA. Messer JA. Pérez-Herrán E. Centrella PA. Álvarez-Gómez D. Clark MA. Huss S. O’Donovan GK. Ortega-Muro F. McDowell W. Castañeda P. Arico-Muendel CC. Pajk S. Rullás J. Angulo-Barturen I. Álvarez-Ruíz E. Mendoza-Losana A. Pages LB. Castro-Pichel J. Evindar G. J. Med. Chem. 2014; 57: 1276
- 10c Xue CB. Feng H. Cao G. Huang T. Glenn J. Anand R. Meloni D. Zhang K. Kong L. Wang A. Zhang Y. Zheng C. Xia M. Chen L. Tanaka H. Han Q. Robinson DJ. Modi D. Storace L. Shao L. Sharief V. Li M. Galya LG. Covington M. Scherle P. Diamond S. Emm T. Yeleswaram S. Contel N. Vaddi K. Newton R. Hollis G. Friedman S. Metcalf B. ACS Med. Chem. Lett. 2011; 2: 450
- 10d Marusawa H. Setoi H. Sawada A. Kuroda A. Seki J. Motoyama Y. Tanaka H. Bioorg. Med. Chem. 2002; 10: 1399
- 10e Sakashita H. Akahoshi F. Kitajima H. Tsutsumiuchi R. Hayashi Y. Bioorg. Med. Chem. 2006; 14: 3662
- 11 De Simone F. Saget T. Benfatti F. Almeida S. Waser J. Chem. Eur. J. 2011; 17: 14527
- 12 Xu Y. Liu X.-Y. Wang Z.-Q. Tang L.-F. Tetrahedron Lett. 2017; 58: 1788
For selected reviews on vicinal diamines, see:
For selected examples on vicinal diamines, see:
For selected recent works on diamination reaction of olefins, see: