Subscribe to RSS
DOI: 10.1055/s-0037-1609857
Synthesis of Various Heterocycles Having a Dienamide Moiety by Ring-Closing Metathesis of Ene-ynamides
Authors
Publication History
Received: 23 March 2018
Accepted after revision: 23 April 2018
Publication Date:
30 May 2018 (online)

Abstract
Ring-closing metathesis (RCM) of ynamides, having alkene substituents of various lengths on the side chain, was demonstrated using the second-generation Grubbs catalyst. When the reaction of ene-ynamides was carried out in the presence of 5 mol% of the catalyst, RCM proceeded smoothly to give quinoline or isoquinoline derivatives having a dienamide unit in good yields. Furthermore, RCM of ene-ynamides, having one more carbon on the side chain, proceeded smoothly to provide seven-membered heterocycles having a dienamide component. Similarly, eight-membered heterocycles, diazocine and benzodiazocine, were also synthesized by RCM of ene-ynamides in good yields.
Key words
ruthenium carbene complex - ynamide - ring-closing metathesis - heterocycles - medium-sized ringSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609857.
               
 - Supporting Information (PDF) (opens in new window)
 
- 
            
References
 - 1a Zi G. Dalton Trans. 2009; 42: 9101
 - 1b Muniz K. Hövelmann CH. Streuff J. Campos-Gomez E. Pure Appl. Chem. 2008; 80: 1089
 - 1c Geurts K. Fletcher SP. van Zijl AW. Minnaard AJ. Feringa BL. Pure Appl. Chem. 2008; 80: 1025
 - 1d Kalck P. Urrutigoity M. Dechy-Cabaret O. Top. Organomet. Chem. 2006; 18: 97
 - 1e Netscher T. J. Organomet. Chem. 2006; 691: 5155
 - 1f Wipf P. Kendall C. Top. Organomet. Chem. 2005; 8: 1
 - 1g Grigg R. Sridharan V. Pure Appl. Chem. 1998; 70: 1047
 - 1h Weber L. Angew. Chem., Int. Ed. Engl. 1996; 35: 271
 - 2a Handbook of Metathesis . Vol. 1–3. Grubbs RH. Wiley-VCH; Weinheim: 2003
 - 2b Topics in Organometallic Chemistry . Vol. 1. Fürstner A. Springer-Verlag; Berlin: 1998
 - 2c Montgomery TP. Ahmed TS. Grubbs RH. Angew. Chem. Int. Ed. 2017; 56: 11024
 - 2d Higman CS. Lummiss JA. M. Fogg DE. Angew. Chem. Int. Ed. 2016; 55: 3552
 - 2e Fustero S. Simon-Fuentes A. Barrio P. Haufe G. Chem. Rev. 2015; 115: 871
 - 2f Herbert MB. Grubbs RH. Angew. Chem. Int. Ed. 2015; 54: 5018
 - 2g Nelson DJ. Manzini S. Urbina-Blanco CA. Nolan SP. Chem. Commun. 2014; 50: 10355
 - 2h Kress S. Blechert S. Chem. Soc. Rev. 2012; 41: 4389
 - 2i Vougioukalakis GC. Grubbs RH. Chem. Rev. 2010; 110: 1746
 - 2j Nolan SP. Clavier H. Chem. Soc. Rev. 2010; 39: 3305
 - 2k Chauvin Y. Angew. Chem. Int. Ed. 2006; 45: 3740
 - 2l Schrock RR. Angew. Chem. Int. Ed. 2006; 45: 3748
 - 2m Grubbs RH. Angew. Chem. Int. Ed. 2006; 45: 3760
 - 2n Hoveyda AH. Zhugralin AR. Nature 2007; 450: 243
 - 2o Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4490
 - 2p Fürstner A. Angew. Chem. Int. Ed. 2000; 39: 3012
 - 2q Grubbs RH. Chang S. Tetrahedron 1998; 54: 4413
 - 2r Schuster M. Blechert S. Angew. Chem. Int. Ed. 1997; 36: 2037
 - 3a Mori M. Top. Organomet. Chem. 1998; 1: 133
 - 3b Kotha S. Panguluri NR. Ali R. Eur. J. Org. Chem. 2017; 5316
 - 3c Li J. Lee D. Eur. J. Org. Chem. 2011; 4269
 - 3d Kotha S. Meshram M. Tiwari A. Chem. Soc. Rev. 2009; 38: 2065
 - 3e Hansen EC. Lee D. Acc. Chem. Res. 2006; 39: 509
 - 3f Diver ST. Giessert AJ. Chem. Rev. 2004; 104: 1317
 - 3g Poulsen CS. Madsen R. Synthesis 2003; 1
 - 3h Mori M. Sakakibara N. Kinoshita A. J. Org. Chem. 1998; 63: 6082
 - 3i Kinoshita A. Mori M. J. Org. Chem. 1996; 61: 8356
 - 4a Prabagar B. Ghosh N. Sahoo AK. Synlett 2017; 28: 2539
 - 4b Duret G. Le Fouler V. Bisseret P. Bizet V. Blanchard N. Eur. J. Org. Chem. 2017; 6816
 - 4c Hu L. Zhao J. Synlett 2017; 28: 1663
 - 4d Cook AM. Wolf C. Tetrahedron Lett. 2015; 56: 2377
 - 4e Wang X.-N. Yeom H.-S. Fang L.-C. He S. Ma Z.-X. Kedrowski BL. Hsung RP. Acc. Chem. Res. 2014; 47: 560
 - 4f Evano G. Jouvin K. Coste A. Synthesis 2013; 45: 17
 - 4g Evano G. Coste A. Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
 - 4h DeKorver KA. Li H. Lohse AG. Hayashi R. Lu Z. Zhang Y. Hsung RP. Chem. Rev. 2010; 110: 5064
 - 4i Brückner D. Tetrahedron 2006; 62: 3809
 - 4j Zificsak CA. Mulder JA. Hsung RP. Rameshkumar C. Wei L.-L. Tetrahedron 2001; 57: 7575
 - 5 Kitamura T. Kotani M. Fujiwara Y. Synthesis 1998; 1416
 - 6 Brückner D. Synlett 2000; 1402
 - 7 Zhang Y. Hsung RP. Tracey MR. Kurtz KC. M. Vera EL. Org. Lett. 2004; 6: 1151
 - 8a Gao Y. Wu G. Zhou Q. Wang J. Angew. Chem. Int. Ed. 2018; 57: 2716
 - 8b Liu X. Zhang Z.-X. Zhou B. Wang Z.-S. Zheng R.-H. Ye L.-W. Org. Biomol. Chem. 2017; 15: 10156
 - 8c Song W. Zheng N. Org. Lett. 2017; 19: 6200
 - 8d Alexander JR. Cook MJ. Org. Lett. 2017; 19: 5822
 - 8e Han X.-L. Zhou C.-J. Liu X.-G. Zhang S.-S. Wang H. Li Q. Org. Lett. 2017; 19: 6108
 - 8f Giri SS. Liu R.-S. Adv. Synth. Catal. 2017; 359: 3311
 - 8g Witulski B. Stengel T. Angew. Chem. Int. Ed. 1998; 37: 489
 - 8h Witulski B. Gößmann M. Chem. Commun. 1999; 1879
 - 8i Couty S. Meyer C. Cossy J. Angew. Chem. Int. Ed. 2006; 45: 6726
 - 8j Zhang X. Hsung RP. Li H. Chem. Commun. 2007; 2420
 - 8k Dunetz JR. Danheiser RL. J. Am. Chem. Soc. 2005; 127: 5776
 - 8l Riddell N. Villeneuve K. Tam W. Org. Lett. 2005; 7: 3681
 - 8m Tracey MR. Zhang Y. Frederick MO. Mulder JA. Hsung RP. Org. Lett. 2004; 6: 2209
 - 8n Wakamatsu H. Takeshita M. Synlett 2010; 2322
 - 9a Mori M. Wakamatsu H. Saito N. Sato Y. Narita R. Sato Y. Fujita R. Tetrahedron 2006; 62: 3872
 - 9b Saito N. Sato Y. Mori M. Org. Lett. 2002; 4: 803
 - 10 Wakamatsu H. Sakagami M. Hanata M. Takeshita M. Mori M. Macromol. Symp. 2010; 293: 5
 - 11 Correa A. Tellitu I. Domínguez E. SanMartin R. J. Org. Chem. 2006; 71: 8316
 - 12a Sherman ES. Fuller PH. Kasi D. Chemler SR. J. Org. Chem. 2007; 72: 3896
 - 12b Fustero S. Moscardó J. Jiménez D. Pérez-Carrión MD. Sánchez-Roselló M. del Pozo C. Chem. Eur. J. 2008; 14: 9868
 - 13 Bennasar ML. Roca T. Monerris M. García-Díaz D. J. Org. Chem. 2006; 71: 7028
 - 14a Eymery F. Iorga B. Savignac P. Synthesis 2000; 185
 - 14b Corey EJ. Fuchs PL. Tetrahedron Lett. 1972; 3769
 - 15a Baba S. Negishi E. J. Am. Chem. Soc. 1976; 98: 6729
 - 15b Rodríguez D. Castedo L. Saá C. Synlett 2004; 783
 - 17 Stetter H. Chem. Ber. 1953; 86: 161
 - 18a Sonogashira K. Tohda Y. Hagihara N. Tetrahedron Lett. 1975; 4467
 - 18b Chinchilla R. Nájera C. Chem. Rev. 2007; 107: 874
 - 19 Nicolaou KC. Jung J. Yoon WH. Fong KC. Choi H.-S. He Y. Zhong Y.-L. Baran PS. J. Am. Chem. Soc. 2002; 124: 2183
 - 20a Lovely CJ. Mahmud H. Tetrahedron Lett. 1999; 40: 2079
 - 20b Mahmud H. Lovely CJ. Rasika Dias HV. Tetrahedron 2001; 57: 4095
 - 21 Similar result was also obtained in the previous study, see ref. 9.
 - 22 Sohn J.-H. Kim KH. Lee H.-Y. No ZS. Ihee H. J. Am. Chem. Soc. 2008; 130: 16506
 
For selected reports, see:
For selected general reviews, see:
For recent reviews on the chemistry of ynamines and ynamides, see:
For recent examples of transition-metal-catalyzed reaction of ynamides, see: