Synlett 2018; 29(19): 2461-2480
DOI: 10.1055/s-0037-1609913
account
© Georg Thieme Verlag Stuttgart · New York

Palladium(II)-Catalyzed Redox-Neutral Cyclizations of Alkynes Containing Alkenyl or Electrophilic Functional Groups: A Convenient Synthesis of Carbocycles and Heterocycles

Xiuling Han*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. of China   Email: Xlhan@sioc.ac.cn
,
Xiyan Lu
› Author Affiliations
Further Information

Publication History

Received: 15 May 2018

Accepted after revision: 25 June 2018

Publication Date:
23 August 2018 (online)


Abstract

The palladium(II)-catalyzed redox-neutral cyclizations of alkynes bearing alkenyl or electrophilic functional groups, such as carbonyl, imino, or cyano groups, were developed to provide convenient approaches to various carbocycles and heterocycles. These tandem reactions are initiated by nucleopalladation of alkynes, transmetalation of arylboron reagents with palladium, or hydropalladation of alkynes, and they are quenched by β-heteroatom elimination, addition to electron-deficient alkenes, or addition to carbon–heteroatom multiple bonds. This account reviews these types of reaction, with a focus on our contributions to the field.

1 Introduction

2 Tandem Reactions of Functionalized Alkynes Initiated by Nucleo­palladation

3 Tandem Reactions Of Functionalized Alkynes Initiated by Transmetalation of Palladium(Ii) with Arylboron Reagents

4 Tandem Reactions of Functionalized Alkynes Initiated by Hydro­palladation

5 Conclusion

 
  • References

    • 1a Handbook of Organopalladium Chemistry for Organic Synthesis . Vols. 1–2. Negishi E.-i. de Meijere A. Wiley-Interscience; New York: 2002
    • 1b Tsuji J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis. Wiley; Chichester: 1995
    • 1c Palladium in Organic Synthesis . Tsuji J. Springer; Heidelberg: 2005
    • 1d Li JJ. Gribble GW. Palladium in Heterocyclic Chemistry: A Guide for the Synthetic Chemist. Pergamon; Oxford: 2000
    • 1e Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century. Wiley; Hoboken: 2003
    • 2a Zeni G. Larock RC. Chem. Rev. 2004; 104: 2285
    • 2b Tietze LF. Ila H. Bell HP. Chem. Rev. 2004; 104: 3453
    • 2c Zeni G. Larock RC. Chem. Rev. 2006; 106: 4644
    • 2d Beccalli EM. Broggini G. Martinelli M. Sottocornola S. Chem. Rev. 2007; 107: 5318
    • 2e Deng Y. Persson AK. Å. Bäckvall J.-E. Chem. Eur. J. 2012; 18: 11498
    • 2f Wu X.-F. Neumann H. Beller M. Chem. Rev. 2013; 113: 1

      For reviews, see:
    • 3a Negishi E. Copéret C. Ma S. Liou S.-Y. Liu F. Chem. Rev. 1996; 96: 365
    • 3b Grigg R. Sridharan V. J. Organomet. Chem. 1999; 576: 65
    • 3c Vlarr T. Ruijter E. Orru RV. A. Adv. Synth. Catal. 2011; 353: 809
    • 3d Ohno H. Asian J. Org. Chem. 2013; 2: 18
    • 3e Blouin S. Blond G. Donnard M. Gulea M. Suffert J. Synthesis 2017; 49: 1767
    • 4a Modern Acetylene Chemistry . Stang PJ. Diederich F. VCH; Weinheim: 1995
    • 4b Acetylene Chemistry: Chemistry, Biology, and Material Science . Diederich F. Stang PJ. Tykwinski RR. Wiley-VCH; Weinheim: 2005
    • 4c Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations. Trost BM. Li C.-J. Wiley-VCH; Weinheim: 2015
  • 6 Kaneda K. Uchiyama T. Fujiwara Y. Imanaka T. Teranishi S. J. Org. Chem. 1979; 44: 55
    • 7a Ma S. Zhu G. Lu X. J. Org. Chem. 1993; 58: 3692
    • 7b Zhu G. Ma S. Lu X. J. Chem. Res., Synop. 1993; 366
    • 7c Zhu G. Lu X. Organometallics 1995; 14: 4899
    • 7d Lu X. Zhu G. Wang Z. Synlett 1998; 115
    • 7e Xie X. Lu X. Liu Y. Xu W. J. Org. Chem. 2001; 66: 6545
    • 8a Wang Z. Lu X. Tetrahedron Lett. 1997; 38: 5213
    • 8b Xie X. Lu X. Synlett 2000; 707
  • 9 Zhang Z. Lu X. Xu Z. Zhang Q. Han X. Organometallics 2001; 20: 3724
    • 10a Wang Z. Lu X. J. Org. Chem. 1996; 61: 2254
    • 10b Wang Z. Zhang Z. Lu X. Organometallics 2000; 19: 775
    • 10c Lu X. Wang Z. Polyhedron 2000; 19: 577
  • 11 Liu G. Lu X. Tetrahedron Lett. 2002; 43: 6791
  • 12 Liu G. Lu X. Tetrahedron Lett. 2003; 44: 467
  • 13 Lei A. Lu X. Org. Lett. 2000; 2: 2699
  • 14 Shen Z. Lu X. Tetrahedron 2006; 62: 10896
  • 15 Wang H. Han X. Lu X. Tetrahedron 2013; 69: 8626

    • For selected recent examples, see:
    • 16a White DR. Hutt JT. Wolfe JP. J. Am. Chem. Soc. 2015; 137: 11246
    • 16b Kong W. Wang Q. Zhu J. J. Am. Chem. Soc. 2015; 137: 16028
    • 16c Hu W. Li K. Wang Z. Tang W. Angew. Chem. Int. Ed. 2016; 55: 5044
    • 16d An Q. Liu D. Shen J. Liu Y. Zhang W. Org. Lett. 2017; 19: 238
    • 16e Yang B. Qiu Y. Jiang T. Wulff WD. Yin X. Zhu C. Bäckvall J.-E. Angew. Chem. Int. Ed. 2017; 56: 4535
    • 16f Zhang W. Chen P. Liu G. Angew. Chem. Int. Ed. 2017; 56: 5336
    • 16g Chen J. Han X. Lu X. Angew. Chem. Int. Ed. 2017; 56: 14698
    • 16h Shen H.-C. Wu Y.-F. Zhang Y. Fan L.-F. Han Z.-Y. Gong L.-Z. Angew. Chem. Int. Ed. 2018; 57: 2372
    • 17a Zhang Q. Lu X. J. Am. Chem. Soc. 2000; 122: 7604
    • 17b Lu X. Zhang Q. Pure Appl. Chem. 2001; 73: 247
    • 17c Zhang Q. Lu X. Han X. J. Org. Chem. 2001; 66: 7676
    • 17d Zhang Q. Xu W. Lu X. J. Org. Chem. 2005; 70: 1505
    • 17e Xu W. Kong A. Lu X. J. Org. Chem. 2006; 71: 3854
  • 18 Song J. Shen Q. Xu F. Lu X. Tetrahedron 2007; 63: 5148
  • 19 Muthiah C. Arai MA. Shinohara T. Arai T. Takizawa S. Sasai H. Tetrahedron Lett. 2003; 44: 5201
  • 20 Zhao L. Lu X. Xu W. J. Org. Chem. 2005; 70: 4059
  • 21 Zhou F. Han X. Lu X. J. Org. Chem. 2011; 76: 1491
  • 22 Zhao L. Lu X. Angew. Chem. Int. Ed. 2002; 41: 4343
  • 23 Xia G. Han X. Lu X. Adv. Synth. Catal. 2012; 354: 2701
  • 24 Zhang J. Han X. Lu X. Synlett 2015; 1744
  • 25 Han X. Lu X. Org. Lett. 2010; 12: 3336
  • 26 Wang H. Han X. Lu X. Synlett 2011; 2590
  • 27 Xia G. Han X. Lu X. Org. Lett. 2014; 16: 2058
  • 28 Xia G. Han X. Lu X. Org. Lett. 2014; 16: 6184
  • 29 Zhang J. Han X. Lu X. J. Org. Chem. 2016; 81: 3423
  • 30 Chen J. Han X. Lu X. J. Org. Chem. 2017; 82: 1977
    • 31a Tello-Aburto R. Harned AM. Org. Lett. 2009; 11: 3998
    • 31b Tello-Aburto R. Kalstabakken KA. Harned AM. Org. Biomol. Chem. 2013; 11: 5596
    • 32a Xiao J. Zhang J. Angew. Chem. Int. Ed. 2008; 47: 1903
    • 32b Liu R. Zhang J. Chem. Eur. J. 2009; 9303
    • 32c Liu R. Zhang J. Chem. Asian J. 2012; 7: 294
  • 33 Vinoth P. Vivekanand T. Suryavanshi PA. Menéndez JC. Sasai H. Sridharan V. Org. Biomol. Chem. 2015; 13: 5175
  • 34 Madich Y. Álvarez R. Aurrecoechea JM. Eur. J. Org. Chem. 2015; 6298
  • 35 Jash M. Das B. Chowdhury C. J. Org. Chem. 2016; 81: 10987
  • 36 Feng C. Loh T.-P. J. Am. Chem. Soc. 2010; 132: 17710
  • 37 Malik G. Swyka RA. Tiwari VK. Fei X. Applegate GA. Berkowitz DB. Chem. Sci. 2017; 8: 8050
    • 38a Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
    • 38b Suzuki A. Organoboranes in Organic Synthesis . Hokkaido University; Sapporo: 2004
    • 38c Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials. Vols. 1–2. Hall DG. Wiley-VCH; Weinheim: 2011. 2nd ed

      For reviews, see:
    • 39a Miura T. Murakami M. Chem. Commun. 2007; 217
    • 39b Youn SW. Eur. J. Org. Chem. 2009; 2597
    • 39c Claviera H. Pellissier H. Adv. Synth. Catal. 2012; 354: 3347
    • 39d Chen W.-W. Xu M.-H. Org. Biomol. Chem. 2017; 15: 1029
  • 40 Song J. Shen Q. Xu F. Lu X. Org. Lett. 2007; 9: 2947
  • 41 Wang H. Han X. Lu X. Tetrahedron 2010; 66: 9129
  • 42 Han X. Lu X. Org. Lett. 2010; 12: 108
  • 43 Zhang X. Han X. Chen J. Lu X. Tetrahedron 2017; 73: 1541
  • 44 Yang M. Zhang X. Lu X. Org. Lett. 2007; 9: 5131
  • 45 Liu G. Lu X. Adv. Synth. Catal. 2007; 349: 2247
  • 46 Liu G. Lu X. J. Am. Chem. Soc. 2006; 128: 16504
  • 47 Yu X. Lu X. Adv. Synth. Catal. 2011; 353: 2805
  • 48 Shen K. Han X. Lu X. Org. Lett. 2012; 14: 1756
  • 49 Tsukamoto H. Suzuki T. Uchiyama Y. Kondo Y. Tetrahedron Lett. 2008; 49: 4174
  • 50 Shen K. Han X. Lu X. Hu Z. Tetrahedron Lett. 2017; 58: 3768
    • 51a Zhu G. Zhang Z. Org. Lett. 2003; 5: 3645
    • 51b Zhu G. Tong X. Cheng J. Sun Y. Li D. Zhang Z. J. Org. Chem. 2005; 70: 1712
  • 52 Zhou F. Yang M. Lu X. Org. Lett. 2009; 11: 1405
  • 53 Tsukamoto H. Kondo Y. Org. Lett. 2007; 9: 4227
  • 54 Tsukamoto H. Ikeda T. Doi T. J. Org. Chem. 2016; 81: 1733
  • 55 Murthy AS. Donikela S. Reddy CS. Chegondi R. J. Org. Chem. 2015; 80: 5566
    • 56a Muzart J. Tetrahedron 2003; 59: 5789
    • 56b Sigman MS. Jensen DR. Acc. Chem. Res. 2006; 39: 221
    • 56c Gligorich KM. Sigman MS. Chem. Commun. 2009; 3854
    • 56d Wang D. Weinstein AB. White PB. Stahl SS. Chem. Rev. 2018; 118: 2636
    • 57a Tsuchiya Y. Hamashima Y. Sodeoka M. Org. Lett. 2006; 8: 4851
    • 57b Monguchi D. Beemelmanns C. Hashizume D. Hamashima Y. Sodeoka M. J. Organomet. Chem. 2008; 693: 867
  • 58 Ding B. Zhang Z. Liu Y. Sugiya M. Imamoto T. Zhang W. Org. Lett. 2013; 15: 3690
  • 60 Shen K. Han X. Xia G. Lu X. Org. Chem. Front. 2015; 2: 145
  • 61 Wu W. Chen T. Chen J. Han X. J. Org. Chem. 2018; 83: 1033