Synthesis 2019; 51(02): 516-521
DOI: 10.1055/s-0037-1609937
paper
© Georg Thieme Verlag Stuttgart · New York

Na2CO3-Catalyzed N-Acylation of Indoles with Alkenyl Carboxylates

Xiao-Yu Zhou*
School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004, China   Email: zhouxiaoyu20062006@126.com
,
Xia Chen*
› Author Affiliations
The work was supported by the Youth Science and Technology Talent Development Project in Education Department of Guizhou Province (Grant No. qianjiaohe KY zi [2017] number 261) and Innovation Team of Liupanshui Normal University (Grant No. LPSSYKJTD201601).
Further Information

Publication History

Received: 07 June 2018

Accepted after revision: 04 August 2018

Publication Date:
04 September 2018 (online)


Abstract

The N-acylation of indoles has been accomplished via inorganic base catalysis. It provided an efficient and simple catalysis system for the preparation of N-acylindoles with alkenyl carboxylates as acylating agents. A broad variety of indoles undergo the smooth N-acylation using Na2CO3 as catalyst in MeCN at 120 °C to give the corresponding N-acylindoles in good to excellent yields.

Supporting Information

 
  • References

    • 1a Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1b Lancianesi S. Palmieri A. Petrini M. Chem. Rev. 2014; 114: 7108
    • 3a Kuwano R. Sato K. Kurokawa T. Karube D. Ito Y. J. Am. Chem. Soc. 2000; 122: 7614
    • 3b Wang D.-S. Chen Q.-A. Li W. Yu C.-B. Zhou Y.-G. Zhang X. J. Am. Chem. Soc. 2010; 132: 8909
    • 3c Duan Y. Li L. Chen M.-W. Yu C.-B. Fan H.-J. Zhou Y.-G. J. Am. Chem. Soc. 2014; 136: 7688
    • 5a Bur SK. Padwa A. Chem. Rev. 2004; 104: 2401
    • 5b Mąkosza M. Wojciechowski K. Chem. Rev. 2004; 104: 2631
    • 5c Busto E. Gotor-Fernández V. Gotor V. Chem. Rev. 2011; 111: 3998
    • 5d Zhang H. Hu R.-B. Liu N. Li S.-X. Yang S.-D. Org. Lett. 2016; 18: 28
    • 5e Morimoto N. Morioku K. Suzuki H. Takeuchi Y. Nishina Y. Org. Lett. 2016; 18: 2020
    • 5f Petrone DA. Kondo M. Zeidan N. Lautens M. Chem. Eur. J. 2016; 22: 5684
    • 6a Bras JL. Muzart J. Chem. Rev. 2011; 111: 1170
    • 6b Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
    • 6c Yang Y. Lan J. You J. Chem. Rev. 2017; 117: 8787
    • 7a Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
    • 7b Hummel JR. Boerth JA. Ellman JA. Chem. Rev. 2017; 117: 9163
  • 8 Okauchi T. Itonaga M. Minami T. Owa T. Kitoh K. Yoshino H. Org. Lett. 2000; 2: 1485
  • 9 Ottoni O. Neder AV. F. Dias AK. B. Cruz RP. A. Aquino LB. Org. Lett. 2001; 3: 1005
  • 10 Taylor JE. Jones MD. Williams JM. J. Bull SD. Org. Lett. 2010; 12: 5740
  • 11 Johansson H. Urruticoechea A. Larsen I. Pedersen DS. J. Org. Chem. 2015; 80: 471
  • 12 Tang B.-X. Song R.-J. Wu C.-Y. Liu Y. Zhou M.-B. Wei W.-T. Deng G.-B. Yin D.-L. Li J.-H. J. Am. Chem. Soc. 2010; 132: 8900
  • 13 Wu W. Su W. J. Am. Chem. Soc. 2011; 133: 11924
  • 14 Akai S. Peat AJ. Buchwald SL. J. Am. Chem. Soc. 1998; 120: 9119
  • 15 Jiang T.-S. Wang G.-W. Org. Lett. 2013; 15: 788
  • 16 Ottoni O. Cruz R. Alves R. Tetrahedron 1998; 54: 13915
  • 17 Heller ST. Schultz EE. Sarpong R. Angew. Chem. Int. Ed. 2012; 51: 8304
  • 18 Umehara A. Ueda H. Tokuyama H. J. Org. Chem. 2016; 81: 11444
  • 19 Ta L. Sundén H. Chem. Commun. 2018; 54: 531