Synlett 2018; 29(12): 1597-1600
DOI: 10.1055/s-0037-1610024
letter
© Georg Thieme Verlag Stuttgart · New York

Selective Preparation of C 2v -Symmetric Hexaphenylbenzene Derivatives through Sequential Suzuki Coupling

Kazuho Ogata
Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan   Email: chiraoka@mail.ecc.u-tokyo.ac.jp   Email: ckojima@mail.ecc.u-tokyo.ac.jp
,
Tatsuo Kojima*
Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan   Email: chiraoka@mail.ecc.u-tokyo.ac.jp   Email: ckojima@mail.ecc.u-tokyo.ac.jp
,
Shuichi Hiraoka*
Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan   Email: chiraoka@mail.ecc.u-tokyo.ac.jp   Email: ckojima@mail.ecc.u-tokyo.ac.jp
› Author Affiliations
This research was supported by JSPS Grants-in-Aid for Scientific ­Research on Innovative Areas ‘Dynamical Ordering of Biomolecular Systems for Creation of Integrated Functions’ (25102005 and 25102001) and by The Asahi Glass Foundation.

Further Information

Publication History

Received: 04 February 2018

Accepted after revision: 24 April 2018

Publication Date:
29 May 2018 (online)


Abstract

We have developed effective reaction conditions for the ­Suzuki cross-coupling of chlorinated hexaphenylbenzene derivatives. A chloro group on a hexaphenylbenzene framework exhibits a low reactivity to Suzuki cross-coupling, and only nickel catalysts bearing alkyl-substituted phosphine ligands achieved the coupling. With this as a key step, we succeeded in the selective preparation of a C 2v -symmetric hexaphenylbenzene derivative containing two kinds of aryl group.

Supporting Information

 
  • References and Notes

    • 1a Vij V. Bhalla V. Kumar M. Chem. Rev. 2016; 116: 9565
    • 1b Lungerich D. Reger D. Hölzel H. Riedel R. Martin MM. J. C. Hampel F. Jux N. Angew. Chem. Int. Ed. 2016; 55: 5602
    • 3a Miller TM. Neenan TX. Zayas R. Bair HE. J. Am. Chem. Soc. 1992; 114: 1018
    • 3b Bauer RE. Enkelmann V. Wiesler UM. Berresheim AJ. Müllen K. Chem. Eur. J. 2002; 8: 3858
    • 3c Finke AD. Moore JS. Org. Lett. 2008; 10: 4851
  • 4 Hiraoka S. Nakamura T. Shiro M. Shinoya M. J. Am. Chem. Soc. 2010; 132: 13223
  • 5 Feng X. Pisula W. Müllen K. Pure Appl. Chem. 2009; 81: 2203
  • 6 Suzuki S. Segawa Y. Itami K. Yamaguchi J. Nat. Chem. 2015; 7: 227
  • 8 Stanforth SP. Tetrahedron 1998; 54: 263
  • 9 A combination of an aryl bromide and an aryl iodide is not applicable for the selective sequential Suzuki coupling because both substrates are reactive in the lithiation step.
  • 10 Suzuki Coupling Reactions of Compound 4; General ­Procedure A suspension of compound 4 (0.100 g, 0.176 mmol, 1.0 equiv), the appropriate arylboronic acid, base, and catalyst were stirred in a Schlenk tube under N2 while the reaction was monitored and the yield was determined by 1H NMR.
  • 11 Barder TE. Walker SD. Martinelli JR. Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
  • 12 Shen W. Tetrahedron Lett. 1997; 38: 5575
  • 13 Littke AF. Dai C. Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
    • 14a Shen X. Ho DM. Pascal RA. Jr. Org. Lett. 2003; 5: 369
    • 14b Wunderlich K. Grigoriadis C. Zardalidis G. Klapper M. Graf R. Butt H.-J. Müllen K. Floudas G. Macromolecules 2014; 47: 5691
    • 15a Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
    • 15b Tasker SZ. Standley EA. Jamison TF. Nature 2014; 509: 299
  • 16 Zhao Y.-L. Li Y. Li S.-M. Zhou Y.-G. Sun F.-Y. Gao L.-X. Han F.-S. Adv. Synth. Catal. 2011; 353: 1543 ; Corrigendum: ibid. 2011, 353: 2881
  • 17 Inada K. Miyaura N. Tetrahedron 2000; 56: 8657
  • 18 Indolese AF. Tetrahedron Lett. 1997; 38: 3513
  • 19 Ramgren SD. Hie L. Ye Y. Garg NK. Org. Lett. 2013; 15: 3950
  • 20 Muto K. Yamaguchi J. Itami K. J. Am. Chem. Soc. 2012; 134: 169
  • 21 Gust D. J. Am. Chem. Soc. 1977; 99: 6980
    • 22a Sundermann A. Uzan O. Martin JM. L. Chem. Eur. J. 2001; 7: 1703
    • 22b Senn HM. Ziegler T. Organometallics 2004; 23: 2980
    • 22c Ahlquist M. Fristrup P. Tanner D. Norrby P.-O. Organometallics 2006; 25: 2066
    • 22d Barder TE. Biscoe MR. Buchwald SL. Organometallics 2007; 26: 2183
    • 22e Li Z. Fu Y. Guo Q.-X. Liu L. Organometallics 2008; 27: 4043
    • 22f McMullin CL. Jover J. Harvey JN. Fey N. Dalton Trans. 2010; 39: 10833
  • 23 Compound 2 A suspension of compound 6 (0.500 g, 0.530 mmol) and TsOH (604 mg, 3.18 mmol) in AcOH (5 mL) was refluxed for 1.5 h. H2O (5 mL) was then poured into the mixture and the resulting precipitate was collected by filtration and washed with MeOH to afford compound 2 as a colorless solid; yield: 0.346 g (90%); mp >300 °C.1H NMR (500 MHz, CDCl3, 298 K): δ = 6.98 (d, J = 8.8 Hz, 4 H), 6.92–6.89 (m, 9 H), 6.83 (d, J = 8.6 Hz, 2 H), 6.78–6.75 (m, 6 H), 6.71 (d, J = 8.6 Hz, 2 H), 6.66 (d, J = 8.6 Hz, 4 H). 13C NMR (125 MHz, CDCl3, 298 K): δ = 140.66, 140.57, 139.91, 139.89, 139.48, 139.43, 139.39, 138.90, 132.98, 132.61, 131.45, 131.25, 130.00, 127.21, 127.08, 125.90, 119.75. HRMS (ESI-TOF): m/z [M]+ calcd for C42H27 79Br2 35Cl: 724.0182; found: 724.0168.
  • 24 Compound 7 A solution of compound 2 (0.200 g, 0.275 mmol, 1.0 equiv), PhB(OH)2 (0.101 g, 0.825 mmol, 3.0 equiv), K2CO3 (0.228 g, 1.65 mmol, 6.0 equiv), and Pd(PPh3)4 (31.8 mg, 27.5 µmol, 10 mol%) in THF (2 mL) and H2O (2 mL) was stirred at 80 °C for 6 h under N2. The mixture was then extracted with EtOAc (3 × 5mL). The combined organic layer was dried (MgSO4), filtered, and concentrated in vacuo. The crude product was purified by column chromatography [silica gel, hexane to hexane–EtOAc (20:1)] to give a colorless solid; yield: 0.186 g (93%); mp 284–286 °C. 1H NMR (500 MHz, CDCl3, 298 K): δ = 7.44 (d, J = 7.2 Hz, 4 H), 7.33 (t, J = 7.5 Hz, 4 H), 7.24 (t, J = 7.4 Hz, 2 H), 7.13 (d, J = 8.4 Hz, 4 H), 6.90–6.80 (m, 21 H), 6.77 (d, J = 8.6 Hz, 2 H). 13C NMR (125 MHz, CDCl3, 298 K): δ = 140.91, 140.80, 140.55, 140.49, 140.40, 140.31, 139.69, 139.33, 139.27, 137.56, 132.80, 131.90, 131.51, 131.47, 131.29, 128.68, 127.03, 126.92, 126.81, 125.62, 125.50, 125.29. HRMS (ESI-TOF): m/z [M]+ calcd for C54H37 35Cl: 720.2576; found: 724.2584.
  • 25 Compound 8 A solution of compound 7 (0.100 g, 0.139 mmol, 1.0 equiv), 4-methoxyphenylboronic acid (42.2 mg, 0.278 mmol, 2.0 equiv), K3PO4 (0.118 g, 0.556 mmol, 4.0 equiv), and Ni(PCy3)2Cl2 (9.60 mg, 13.9 µmol, 10 mol%) in THF (1 mL) was stirred at 80 °C for one week under N2. The mixture was then extracted with EtOAc (3 × 5 mL). The combined organic layer was dried (MgSO4), filtered, and concentrated in vacuo. The crude product was purified by column chromatography [silica gel, hexane to hexane–EtOAc (10:1)] to give a colorless solid [yield: 48 mg (44%)], together with a mixture of compound 7 and 4,4′-dimethoxybiphenyl. Compound 7 [yield: 30 mg (30%); mp 252–253 °C] was recovered after washing this mixture with hexane. 1H NMR (500 MHz, CDCl3, 298 K): δ = 7.45 (d, J = 7.4 Hz, 4 H), 7.38 (d, J = 9.0 Hz, 2 H), 7.33 (t, J = 7.8 Hz, 4 H), 7.24 (t, J = 7.4 Hz, 2 H), 7.13 (d, J = 8.5 Hz, 4 H), 7.09 (d, J = 8.5 Hz, 2 H), 6.90–6.80 (m, 23 H), 3.80 (s, 3 H). 13C NMR (125 MHz, CDCl3, 298 K): δ = 158.97, 140.88, 140.71, 140.69, 140.67, 140.60, 140.30, 140.22, 139.94, 139.21, 137.47, 137.09, 133.45, 132.00, 131.97, 131.61, 128.68, 127.82, 127.01, 126.89, 126.82, 125.40, 125.26, 124.79, 114.11, 55.47. HRMS (ESI-TOF): m/z [M]+ calcd for C61H44O: 792.3392; found: 792.3395.