Subscribe to RSS
DOI: 10.1055/s-0037-1610069
A Highly Efficient NHC-Catalyzed Aerobic Oxidation of Aldehydes to Carboxylic Acids
B.T. thanks the Science & Engineering Research Board (SERB), New Delhi, India, for a research grant (EMR/2015/00097).Publication History
Received: 31 March 2018
Accepted after revision: 27 April 2018
Publication Date:
16 July 2018 (online)
‡ These authors contributed equally to this work.
Dedicated to Dr. Srivari Chandrasekhar, IICT, Hyderabad, India on his 54th birthday
Published as part of the Special Topic Heterocycles as Catalysts, Ligands, and Targets
Abstract
An N-heterocyclic carbene (NHC) organocatalytic aerobic oxidation of aldehydes to the corresponding carboxylic acids is explored. Remarkably, this method allows for efficient conversion of different classes of aldehydes including highly challenging electron-rich aryl aldehydes, ortho-substituted aryl aldehydes, various heteroaromatic aldehydes and α,β-unsaturated aldehydes under mild reaction conditions. These substrates, under previously reported NHC-catalyzed methods, are typically unreactive or give poor yields, require high reaction temperatures and reaction times of several days.
Key words
carboxylic acids - aldehydes - N-heterocyclic carbenes - aerobic oxidation - organocatalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610069.
- Supporting Information
-
References
- 1a Qiu JC. Pradhan PP. Blanck NB. Bobbitt JM. Bailey WF. Org. Lett. 2012; 14: 350
- 1b Ren Q.-G. Chen S.-Y. Zhou X.-T. Ji H.-B. Bioorg. Med. Chem. 2010; 18: 8144
- 1c Smith MB. March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms and Structure. John Wiley & Sons; Hoboken: 2007. 6th ed.
- 1d Wiles C. Watts P. Haswell SJ. Tetrahedron Lett. 2006; 47: 5261
- 1e Hunsen M. J. Fluorine Chem. 2005; 126: 1356
- 1f Hunsen M. Synthesis 2005; 2487
- 1g Travis BR. Sivakumar MG. Hollist O. Borhan B. Org. Lett. 2003; 5: 1031
- 1h Mahmood A. Robinson GE. Powell L. Org. Process Res. Dev. 1999; 3: 363
- 1i Jefford CW. Wang Y. J. Chem. Soc., Chem. Commun. 1988; 634
- 1j Sam DJ. Simmons HF. J. Am. Chem. Soc. 1972; 94: 4024
- 2a Yu H. Ru S. Dai G. Zhai Y. Lin H. Han S. Wei Y. Angew. Chem. Int. Ed. 2017; 56: 3867
- 2b Zhang Y. Cheng Y. Cai H. He S. Shan Q. Zhao H. Chen Y. Wang B. Green Chem. 2017; 19: 5708
- 2c Liu M. Li C.-J. Angew. Chem. Int. Ed. 2016; 55: 10806
- 2d Brewster PT. Goldberg MJ. Tran CJ. Heinekey MD. ACS Catal. 2016; 6: 6302
- 2e Han L. Xing P. Jiang B. Org. Lett. 2014; 16: 3428
- 2f Mallat T. Baiker A. Chem. Rev. 2004; 104: 3037
- 2g Besson M. Gallezot P. Catal. Today 2000; 57: 127
- 3a Qin Y. Zhu L. Luo S. Chem. Rev. 2017; 117: 9433
- 3b James T. Gemmeren M.-V. List B. Chem. Rev. 2015; 115: 9388
- 3c Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114: 2390
- 4a Murauski KJ. R. Jaworski AA. Scheidt KA. Chem. Soc. Rev. 2018; 47: 1773
- 4b Menon RS. Biju AT. Nair V. Beilstein J. Org. Chem. 2016; 12: 444
- 4c Flanigan DM. Romanov-Michailidis F. White NA. Rovis T. Chem. Rev. 2015; 115: 9307
- 4d Mahatthananchai J. Bode JW. Acc. Chem. Res. 2014; 47: 696
- 4e Ryan SJ. Candish L. Lupton DW. Chem. Soc. Rev. 2013; 42: 4906
- 4f Izquierdo J. Hutson GE. Cohen DT. Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
- 5a Albanese DC. M. Gaggero N. Eur. J. Org. Chem. 2014; 5631
- 5b De Sarkar S. Biswas A. Samanta RC. Studer A. Chem. Eur. J. 2013; 19: 4664
- 5c Knappke CE. I. Imami A. Jacobi von Wangelin A. ChemCatChem 2012; 4: 937
- 5d Uno T. Inokuma T. Takemoto Y. Chem. Commun. 2012; 48: 1901
- 5e De Sarkar S. Grimme S. Studer A. J. Am. Chem. Soc. 2010; 132: 1190
- 6a Maji B. Vedachalan S. Ge X. Cai S. Liu X.-W. J. Org. Chem. 2011; 76: 3016
- 6b Park JH. Bhilare SV. Youn SW. Org. Lett. 2011; 13: 2228
- 7a Yoshida M. Katagiri Y. Zhu W.-B. Shishido K. Org. Biomol. Chem. 2009; 7: 4062
- 7b Gu L. Zhang Y. J. Am. Chem. Soc. 2010; 132: 914
- 7c Nair V. Varghese V. Paul RR. Jose A. Sinu CR. Menon RS. Org. Lett. 2010; 12: 2653
- 8 Chiang P.-C. Bode JW. Org. Lett. 2011; 13: 2422
- 9 Yang W. Gou G.-Z. Wang Y. Fu W.-F. RSC Adv. 2013; 3: 6334
- 10 Möhlmann L. Ludwig S. Blechert S. Beilstein J. Org. Chem. 2013; 9: 602
- 11a Bhaumik A. Verma RS. Tiwari B. Org. Lett. 2017; 19: 444
- 11b Zhang J. Xing C. Tiwari B. Chi YR. J. Am. Chem. Soc. 2013; 135: 8113
- 11c Chen S. Hao L. Zhang Y. Tiwari B. Chi YR. Org. Lett. 2013; 15: 5822
- 11d Lv H. Tiwari B. Mo J. Xing C. Chi YR. Org. Lett. 2012; 14: 5412
- 11e Jiang K. Tiwari B. Chi YR. Org. Lett. 2012; 14: 2382
- 12a Jiang X. Ma S. Synthesis 2018; 50: 1629
- 12b Wu FP. Peng JB. Meng LS. Qi X. Wu XF. ChemCatChem 2017; 9: 3121
- 12c Hazra S. Deb M. Elias AJ. Green Chem. 2017; 19: 5548
- 12d Zheng R. Zhou Q. Gu H. Jiang H. Wu J. Jin Z. Han D. Dai G. Chen R. Tetrahedron Lett. 2014; 55: 5671
- 12e Magoulas G. Papaioannou D. ARKIVOC 2003; (vi): 213
- 12f Nemoto K. Tanaka S. Konno M. Onozawa S. Chiba M. Tanaka Y. Sasaki Y. Okubo R. Hattori T. Tetrahedron 2016; 72: 734
- 12g Nagalakshmi K. Diwakar BS. Govindh B. Reddy PG. Venu R. Bhargavi I. Devi TJ. P. Murthy YL. N. Siddaiah V. Asian J. Chem. 2017; 29: 1561
- 12h Concellon JM. Rodriguez-Solla H. Diaz P. J. Org. Chem. 2007; 72: 7974
For selected recent reviews on organocatalysis, see:
For selected recent reviews on NHC catalysis, see:
For selected recent reviews on oxidative NHC catalysis, see:
For NHC-catalyzed oxidation of aldehydes in air, see:
For selected work on NHC-catalyzed reactions from our group, see:
For characterization/analytical data of the products, see: