Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(14): 2727-2740
DOI: 10.1055/s-0037-1610131
DOI: 10.1055/s-0037-1610131
paper
Metal-Free Synthesis of Pyrrolo[1,2-a]quinoxalines Mediated by TEMPO Oxoammonium Salts
This project received financial support from the National Natural Science Foundation of China (21472053, 21172082).Further Information
Publication History
Received: 29 October 2017
Accepted after revision: 08 April 2018
Publication Date:
13 June 2018 (online)
Abstract
We herein describe a novel TEMPO oxoammonium salt initiated Pictet–Spengler reaction of imines, generated in situ from carbonyl compounds and pyrrole- or indole-containing substrates, to afford 4,5-dihydropyrrolo[1,2-a]quinoxalines or 5,6-dihydroindolo[1,2-a]quinoxalines in good to excellent yields. Moreover, a one-pot synthesis of a biologically important quinoxaline is achieved via a cyclization–dehydrogenation process using one equivalent of the oxoammonium salt.
Key words
TEMPO oxoammonium salts - Pictet–Spengler reaction - imines - dihydroquinoxalines - quinoxalinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610131.
- Supporting Information
-
References
- 1 Ajani OO. Eur. J. Med. Chem. 2014; 85: 688
- 2 Szabó G. Kiss R. Páyer-Lengyel D. Vukics K. Szikra J. Baki A. Molnár L. Fischer J. Keserü GM. Bioorg. Med. Chem. Lett. 2009; 19: 3471
- 3 Morelli E. Gemma S. Budriesi R. Campiani G. Novellino E. Fattorusso C. Catalanotti B. Coccone SS. Ros S. Borrelli G. Kumar V. Persico M. Fiorini I. Nacci V. Ioan P. Chiarini A. Hamon M. Cagnotto A. Mennini T. Fracasso C. Colovic M. Caccia S. Butini S. J. Med. Chem. 2009; 52: 3548
- 4 Fan L.-L. Huang N. Yang R.-G. He S.-Z. Yang L.-M. Xu H. Zheng Y.-T. Lett. Drug Des. Discov. 2012; 9: 44
- 5 Desplat V. Moreau S. Belisle-Fabre S. Thiolat D. Uranga J. Lucas R. de Moor L. Massip S. Jarry C. Mossalayi DM. Sonnet P. Déléris G. Guillon J. J. Enzym. Inhib. Med. Chem. 2011; 26: 657
- 6 Pictet A. Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
- 7a Cheeseman GW. H. Rafig M. J. Chem. Soc. C 1971; 2732
- 7b Zhang C. Wang Z.-X. Appl. Organomet. Chem. 2009; 23: 9
- 7c Tradtrantip L. Sonawane ND. Namkung W. Verkman AS. J. Med. Chem. 2009; 52: 6447
- 7d Wang C. Li Y. Zhao J.-F. Cheng B. Wang H.-F. Zhai H.-B. Tetrahedron Lett. 2016; 57: 3908
- 7e Li J.-X. Zhang J.-L. Yang H.-M. Gao Z. Jiang G.-X. J. Org. Chem. 2017; 82: 765
- 8a Rustagi V. Aggarwal T. Verma AK. Green Chem. 2011; 13: 1640
- 8b Xu H. Fan L.-L. Eur. J. Med. Chem. 2011; 46: 1919
- 8c Li Y. Su Y.-H. Dong D.-J. Wu Z. Tian S.-K. RSC Adv. 2013; 3: 18275
- 8d Lv W. Budke B. Pawlowski M. Connell PP. Kozikowski A. J. Med. Chem. 2016; 59: 4511
- 8e Dai C.-S. Deng S.-Q. Zhu Q.-H. Tang X.-D. RSC Adv. 2017; 7: 44132
- 9a Raines S. Chai SY. Palopoli FP. J. Heterocycl. Chem. 1976; 13: 711
- 9b Abonia R. Insusaty B. Quiroga J. Kolshorn H. Meier H. J. Heterocycl. Chem. 2001; 38: 671
- 9c Agarwal PK. Sawant D. Sharma S. Kundu B. Eur. J. Org. Chem. 2009; 292
- 9d Verma AK. Jha RR. Sankar VK. Aggarwal T. Singh RP. Chandra R. Eur. J. Org. Chem. 2011; 6998
- 9e Barve IJ. Chen C.-Y. Salunke DB. Chung W.-S. Sun C.-M. Chem. Asian J. 2012; 7: 1684
- 9f Sharma A. Singh M. Rai NN. Sawant D. Beilstein J. Org. Chem. 2013; 9: 1235
- 9g Patil NT. Konala A. Sravanti S. Singh A. Ummanni R. Sridhar B. Chem. Commun. 2013; 49: 10109
- 9h Singh DK. Nath M. Beilstein J. Org. Chem. 2014; 10: 808
- 9i Medda F. Hulme C. Tetrahedron Lett. 2014; 55: 3328
- 9j Fan Y.-S. Jiang Y.-J. An D. Sha D. Antilla JC. Zhang S.-Q. Org. Lett. 2014; 16: 6112
- 9k Kamal A. Babu KS. Ali Hussaini SM. Srikanth PS. Balakrishna M. Alarifi A. Tetrahedron Lett. 2015; 56: 4619
- 9l Preetam A. Nath M. RSC Adv. 2015; 5: 21843
- 9m Wang Y.-H. Cui L.-Y. Wang Y.-M. Zhou Z.-H. Tetrahedron: Asymmetry 2016; 27: 85
- 9n Devi RV. Garande AM. Bhate PM. Synlett 2016; 27: 2807
- 9o Raines S. Chal SY. Palopoli FP. ChemMedChem 2017; 12: 1279
- 9p Rashidi R. Nasr-Esfahani M. Mohammadpoor-Baltork I. Tangestaninejad S. Moghadam M. Mirkhani V. Monatsh. Chem. 2018; 149: 557
- 10a Wang C. Li Y. Guo R. Tian J.-J. Tao C. Chen B. Wang H.-Y. Zhang J. Zhai H.-B. Asian J. Org. Chem. 2015; 4: 866
- 10b Ramamohan M. Sridhar R. Raghavendrarao K. Paradesi N. Chandrasekhar KB. Jayaprakash S. Synlett 2015; 26: 1096
- 11 Lin PT. Salunke DB. Chen LH. Sun C.-M. Org. Biomol. Chem. 2011; 9: 2925
- 12 Shibuya M. Tomizawa M. Iwabuchi Y. J. Org. Chem. 2008; 73: 4750
- 13 Zhang Z.-Y. Xie C.-X. Tan X.-C. Song G.-L. Wen L.-L. Gao H. Ma C. Org. Chem. Front. 2015; 2: 942
- 14 Badigenchala S. Rajeshkumar V. Sekar G. Org. Biomol. Chem. 2016; 14: 2297
- 15 Thikekar TU. Selvaraju M. Sun C.-M. Org. Lett. 2016; 18: 316
- 16 You W.-J. Rotili D. Li T.-M. Kambach C. Meleshin M. Schutkowski M. Chua KF. Mai A. Steegborn C. Angew. Chem. Int. Ed. 2017; 56: 1007
- 17 He Z. Bae M. Wu J. Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 14451