Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(24): 4837-4845
DOI: 10.1055/s-0037-1610133
DOI: 10.1055/s-0037-1610133
paper
Sequential Pyridine Dearomatization–Mizoroki–Heck Cyclization for the Construction of Fused (Dihydropyrido)isoindolinone Ring Systems
Early portions of this work were supported by a grant from the U.S. National Science Foundation (CHE-1265488).Further Information
Publication History
Received: 14 February 2018
Accepted after revision: 09 April 2018
Publication Date:
29 May 2018 (online)
Abstract
Acylation of 4-alkylpyridines with 2-iodobenzoyl chlorides under basic conditions results in pyridine dearomatization via formation of 4-alkylidene dihydropyridines. These reasonably stable intermediates are further transformed through Pd-catalyzed Mizoroki–Heck cyclization to afford dihydropyrido-fused isoindolinone products in good yield. This study demonstrates successful harnessing of reactive dearomatized pyridine anhydrobases in metal-catalyzed C–C bond-forming reactions, and provides an efficient entry to isoindolinone ring systems structurally related to several indolizidine alkaloid frameworks.
Key words
dearomatization - Mizoroki–Heck reaction - palladium - isoindolinones - pyridines - alkylidene dihydropyridines - anhydrobasesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610133.
- Supporting Information
-
References
- 1 Pigge FC. In Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Mortier J. John Wiley & Sons; Hoboken: 2016: 399
- 2 Quideau S. Pouységu L. Peixoto PA. Deffieux D. Top. Curr. Chem. 2016; 373: 25
- 3 Sun W. Li G. Hong L. Wang R. Org. Biomol. Chem. 2016; 14: 2164
- 4 Roche SP. Porco JA. Angew. Chem. Int. Ed. 2011; 50: 4068
-
5
Zheng C.
You S.-L.
Chem 2016; 1: 830
- 6 Zhuo C.-X. Zhang W. You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 7 Liebov BK. Harman WD. Chem. Rev. 2017; 117: 13721
- 8 Bull JA. Mousseau JJ. Pelletier G. Charette AB. Chem. Rev. 2012; 112: 2642
- 9 Enamorado MF. Connelly CM. Deiters A. Comins DL. Tetrahedron Lett. 2015; 56: 3683
- 10 Pelletier G. Constantineau-Forget L. Charette AB. Chem. Commun. 2014; 50: 6883
- 11a Chau ST. Lutz JP. Wu K. Doyle AG. Angew. Chem. Int. Ed. 2013; 52: 9153
- 11b Bertuzzi G. Sinisi A. Pecorari D. Caruana L. Mazzanti A. Bernardi L. Fochi M. Org. Lett. 2017; 19: 834
- 11c Fischer T. Duong Q.-N. Mancheño OG. Chem. Eur. J. 2017; 23: 5983
- 11d Flanigan DM. Rovis T. Chem. Sci. 2017; 8: 6566
- 12 Stupnikova TV. Zemskii BP. Sagitullin RS. Kost AN. Chem. Heterocycl. Compd. 1982; 18: 217
- 13 Wagner R. Wiedel B. Günther W. Görls H. Anders E. Eur. J. Org. Chem. 1999; 2383
- 14 Bosch J. Bennasar ML. Zulaica E. J. Org. Chem. 1986; 51: 2289
- 15 Katritzky AR. Urogdi L. Patel RC. J. Chem. Soc., Perkin Trans. 1 1982; 1349
- 16a Lansakara AI. Mariappan SV. S. Pigge FC. J. Org. Chem. 2016; 81: 10266
- 16b Lansakara AI. Farrell DP. Pigge FC. Org. Biomol. Chem. 2014; 12: 1090
- 16c Pawar L. Pigge FC. Tetrahedron Lett. 2013; 54: 6067
- 17 Joshi MS. Pigge FC. ACS Catal. 2016; 6: 4465
- 18 Daly JW. Garraffo HM. Spande TF. In Alkaloids: Chemical and Biological Perspectives . Vol 13. Pelletier SW. Pergamon; Amsterdam: 1999: 1
- 19a Li K. Ou J. Gao S. Angew. Chem. Int. Ed. 2016; 55: 14778
- 19b Luo W.-K. Shi X. Zhou W. Yang L. Org. Lett. 2016; 18: 2036
- 19c Satyanarayana G. Maier ME. Tetrahedron 2012; 68: 1745
- 20a Grosheva D. Cramer N. ACS Catal. 2017; 7: 7417
- 20b Comins DL. Higuchi K. Beilstein J. Org. Chem. 2007; 3: 42
- 21 Shaikh AC. Ranade DS. Rajamohanan PR. Kulkarni PP. Patil NT. Angew. Chem. Int. Ed. 2017; 56: 757
- 22 Joshi MS. Pigge FC. Org. Lett. 2016; 18: 5916
- 23 CCDC 1823892 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 24 The structure of 3p was assigned on the basis of 2D NOESY spectra.