Synthesis 2018; 50(15): 2799-2823
DOI: 10.1055/s-0037-1610143
review
© Georg Thieme Verlag Stuttgart · New York

Norbornene in Organic Synthesis

Caifeng Li
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China   eMail: jhuang@tju.edu.cn
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin 300072, P. R. of China
,
Liu Liu
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China   eMail: jhuang@tju.edu.cn
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin 300072, P. R. of China
,
Xuegang Fu
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China   eMail: jhuang@tju.edu.cn
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin 300072, P. R. of China
,
Jianhui Huang*
a   School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. of China   eMail: jhuang@tju.edu.cn
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. of China
c   Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin 300072, P. R. of China
› Institutsangaben
Financial support from the ‘973’ Program (2015CB856500) and the NSFC (Grant No. 21672159) is gratefully acknowledged.
Weitere Informationen

Publikationsverlauf

Received: 24. Februar 2018

Accepted after revision: 21. März 2018

Publikationsdatum:
25. Juni 2018 (online)


Dedicated to Prof. Kang Zhao on the occasion of his 60th birthday

Abstract

The norbornene skeleton possesses an alkene functionality with a fixed conformation, and represents unique reactivity. The use of norbornene and analogues as substrates is overviewed; reactivities are discussed as well as the role of norbornenes as ligands assisting modern organic transformations.

1 Introduction

2 Synthesis of Substituted Norbornenes

2.1 Preparation of Functionalized Norbornenes by Deprotonation and Substitution Reactions

2.2 Preparation of Functionalized Norbornenes under Palladium-Catalyzed­ Reaction Conditions

2.3 Alkylation of Norbornene

2.4 Multistep Synthesis

3 Synthesis of Substituted Norbornanes

3.1 Three-Membered-Ring Formation

3.2 Formation of Four-Membered Rings

3.3 Five- and Six-Membered Ring Formation

3.4 Syntheses of Difunctionalized Norbornanes

4 Synthesis of Cyclopentanes

4.1 Oxidation Reactions

4.2 Ring-Opening Cross Metathesis (ROCM)

4.3 Ring-Opening Metathesis Polymerization (ROMP)

4.4 Palladium-Catalyzed Ring-Opening of Norbornene

5 Norbornene-Mediated Reactions

5.1 Palladium Insertion into Carbon–Halide Bonds

5.2 Palladium Insertion into N–H and C–H Bonds

5.3 Norbornene as Ligand in Mediated Reactions

6 Conclusion

 
  • References

  • 1 Verkruijsse HD. Brandsma L. Recl. Trav. Chim. Pays-Bas 1986; 105: 66
  • 2 Levsen SM. Peterson AC. Cremer SE. Phosphorus, Sulfur Silicon Relat. Elem. 1997; 123: 35
  • 3 Lennartson A. Quant M. Moth-Poulsen K. Synlett 2015; 26: 1501
  • 4 Moth-Poulsen K. Coso D. Börjesson K. Vinokurov N. Meier SK. Majumdar A. Vollhardt KP. C. Segalman RA. Energy Environ. Sci. 2012; 5: 8534
  • 5 Börjesson K. Lennartson A. Moth-Poulsen K. ACS Sustainable Chem. Eng. 2013; 1: 585
  • 6 Wang Y. Liu J. Huang L. Zhu R. Huang X. Moir R. Huang J. Chem. Commun. 2017; 53: 4589
  • 7 Paquette LA. Learn KS. Romine JL. Lin HS. J. Am. Chem. Soc. 1988; 19: 879
  • 8 Catellani M. Chiusoli GP. Ricotti S. J. Organomet. Chem. 1985; 296: C11
  • 9 Catellani M. Chiusoli GP. J. Organomet. Chem. 1982; 239: C35
  • 10 Catellani M. Chiusoli GP. Ricotti S. J. Organomet. Chem. 1985; 286: C13
  • 11 Motti E. Della CaN. Xu D. Armani S. Aresta BM. Catellani M. Tetrahedron 2013; 69: 4421
  • 12 Wu X. Zhou JS. Chem. Commun. 2013; 49: 4794
  • 13 Dorta R. Togni A. Chem. Commun. 2003; 760
  • 14 Schomaker JM. Boyd WC. Stewart IC. Toste FD. Bergman RG. J. Am. Chem. Soc. 2008; 130: 3777
  • 15 Boyd WC. Crimmin MR. Rosebrugh LE. Schomaker JM. Bergman RG. Toste FD. J. Am. Chem. Soc. 2010; 132: 16365
  • 16 Zhao C. Toste FD. Bergman RG. J. Am. Chem. Soc. 2011; 133: 10787
  • 17 Elsheimer S. Slattery DK. Michael M. Weeks J. Topoleski K. J. Org. Chem. 1989; 54: 3992
  • 18 Nguyen N. Harris BE. Clark KB. Leigh WJ. Can. J. Chem. 1990; 68: 1961
  • 19 Klauck A. Seppelt K. Angew. Chem. 1994; 106: 98
  • 20 Tan L. Parker KA. Sampson NS. Macromolecules 2014; 47: 6572
  • 21 Bakuzis P. Bakuzi ML. F. J. Org. Chem. 1985; 50: 2569
  • 22 Corey EJ. Estreicher H. J. Am. Chem. Soc. 1978; 100: 6294
  • 23 Inomata K. Sasaoka S.-i. Kobayashi T. Tanaka Y. Igarashi S. Ohtani T. Kinoshita H. Kotake H. Bull. Chem. Soc. Jpn. 1987; 60: 1767
  • 24 Bartsch RA. Lee JG. J. Org. Chem. 1990; 55: 5247
  • 25 Toru T. Seko T. Maekawa E. Ueno Y. J. Chem. Soc., Perkin Trans. 1 1988; 575
  • 26 Blake AJ. Cooke PA. Kendall JD. Simpkins NS. Westaway SM. J. Chem. Soc., Perkin Trans. 1 2000; 153
  • 27 Spyroudis SP. J. Org. Chem. 1986; 51: 3453
  • 28 Simmons HE. Smith RD. J. Am. Chem. Soc. 1959; 81: 4256
  • 29 Molander GA. Harring LS. J. Org. Chem. 1989; 54: 3525
  • 30 Fillion E. Taylor NJ. J. Am. Chem. Soc. 2003; 125: 12700
  • 31 den Hartog T. Sarria Toro JM. Chen P. Org. Lett. 2014; 16: 1100
  • 32 Künzi SA. Sarria Toro JM. den Hartog T. Chen P. Angew. Chem. Int. Ed. 2015; 54: 10670
  • 33 Sarria Toro JM. García-Morales C. Raducan M. Smirnova ES. Echavarren AM. Angew. Chem. Int. Ed. 2017; 56: 1859
  • 34 Yamada T. Takai T. Rhode O. Mukaiyama T. Chem. Lett. 1991; 20: 1
  • 35 Pozzi G. Montanari F. Quici S. Chem. Commun. 1997; 69
  • 36 Wentzel BB. Gosling PA. Feiters MC. Nolte RJ. M. J. Chem. Soc., Dalton Trans. 1998; 2241
  • 37 Li J. Gao H. Tan L. Luan Y. Yang M. Eur. J. Inorg. Chem. 2016; 4906
  • 38 Jafarpour M. Feizpour F. Rezaeifard A. Synlett 2017; 28: 235
  • 39 van der Waal JC. Rigutto MS. van Bekkum H. Appl. Catal., A 1998; 167: 331
  • 40 Koo DH. Kim M. Chang S. Org. Lett. 2005; 7: 5015
  • 41 Kamata K. Kotani M. Yamaguchi K. Hikichi S. Mizuno N. Chem. Eur. J. 2007; 13: 639
  • 42 Doherty S. Knight JG. Ellison JR. Weekes D. Harrington RW. Hardacre C. Manyar H. Green Chem. 2012; 14: 925
  • 43 Ma B. Zhao W. Zhang F. Zhang Y. Wu S. Ding Y. RSC Adv. 2014; 4: 32054
  • 44 Sugimoto H. Tung H.-C. Sawyer DT. J. Am. Chem. Soc. 1988; 110: 2465
  • 45 Traylor TG. Byun YS. Traylor PS. Battioni P. Mansuy D. J. Am. Chem. Soc. 1991; 113: 7821
  • 46 Traylor TG. Tsuchiya S. Byun YS. Kim C. J. Am. Chem. Soc. 1993; 115: 2775
  • 47 Banerjee D. Jagadeesh RV. Junge K. Pohl M.-M. Radnik J. Brückner A. Beller M. Angew. Chem. Int. Ed. 2014; 53: 4359
  • 48 Cheung W.-H. Yu W.-Y. Yip W.-P. Zhu N.-Y. Che C.-M. J. Org. Chem. 2002; 67: 7716
  • 49 Brito JA. Gómez M. Muller G. Teruel H. Clinet J.-C. Duñach E. Maestro MA. Eur. J. Inorg. Chem. 2004; 4278
  • 50 Rezaeifard A. Farshid P. Jafarpour M. Moghaddam GK. RSC Adv. 2014; 4: 9189
  • 51 Majetich G. Hicks R. Sun G.-r. McGill P. J. Org. Chem. 1998; 63: 2564
  • 52 Subbaraj A. Rao OS. Lwowski W. J. Org. Chem. 1989; 54: 3945
  • 53 Au S.-M. Jhuang J.-S. Yu W.-Y. Fung W.-H. Che C.-M. J. Am. Chem. Soc. 1999; 121: 9120
  • 54 Stewart FF. Jennings PW. J. Am. Chem. Soc. 1991; 113: 7037
  • 55 Bruno JW. Marks TJ. Lewis FD. J. Am. Chem. Soc. 1982; 104: 5580
  • 56 Catellani M. Ferioli L. Synthesis 1996; 769
  • 57 Catellani M. Chiusoli GP. J. Organomet. Chem. 1992; 437: 369
  • 58 Wu X. Zhou JS. Chem. Commun. 2013; 49: 11035
  • 59 Suzuki H. Hashiba I. Mitsudo T.-a. Kondo T. Stud. Surf. Sci. Catal. 2000; 130: 3459
  • 60 Tsukada N. Sato T. Inoue Y. Tetrahedron Lett. 2000; 41: 4181
  • 61 Hilt G. Paul A. Hengst C. Synthesis 2009; 3305
  • 62 Kossler D. Perrin FG. Suleymanov AA. Kiefer G. Scopelliti R. Severin K. Cramer N. Angew. Chem. Int. Ed. 2017; 56: 11490
  • 63 Mao J. Bao W. Chem. Commun. 2014; 50: 15726
  • 64 Beugelmans R. Benadjila-Iguertsira L. Chastanet J. Negron G. Can. J. Chem. 1985; 63: 725
  • 65 Shukla P. Cheng CH. Org. Lett. 2006; 8: 2867
    • 66a Catellani M. Chiusoli GP. Sgarabotto P. J. Organomet. Chem. 1982; 240: 311
    • 66b Gericke KM. Chai DI. Bieler N. Lautens M. Angew. Chem. Int. Ed. 2009; 48: 1447
  • 67 Naveen K. Nikson SA. Perumal PT. Adv. Synth. Catal. 2017; 359: 2407
  • 68 Dyker G. J. Org. Chem. 1993; 58: 234
  • 69 Chai DI. Thansandote P. Lautens M. Chem. Eur. J. 2011; 8175
  • 70 Nakao Y. Yada A. Satoh J. Ebata S. Oda S. Hiyama T. Chem. Lett. 2006; 35: 790
  • 71 Wentzel MT. Reddy VJ. Hyster TK. Douglas CJ. Angew. Chem. Int. Ed. 2009; 48: 6121
  • 72 Newman SG. Lautens M. J. Am. Chem. Soc. 2011; 133: 1778
  • 73 Liu H. Chen C. Wang L. Tong X. Org. Lett. 2011; 13: 5072
  • 74 Wallentin G.-J. Nguyen JD. Finkbeiner P. Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
  • 75 Arceo E. Montroni E. Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 12064
  • 76 Du X. Suguro M. Hirabayashi K. Mori A. Org. Lett. 2001; 3: 3313
  • 77 Sakae R. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2015; 54: 613
  • 78 Yang K. Song Q. J. Org. Chem. 2016; 81: 1000
  • 79 Kondo T. Uenoyama S.-Y. Fujita K.-I. Mitsudo T.-A. J. Am. Chem. Soc. 1999; 121: 482
  • 80 Pillay KS. Chen SC. Mojelsky T. Chow YL. Can. J. Chem. 1975; 54: 3014
  • 81 Neumann R. Wang T.-J. Chem. Commun. 1997; 1915
  • 82 Zyk NV. Gavrilova AY. Mukhina OA. Bondarenko OB. Zefirov NS. Russ. Chem. Bull. 2008; 57: 2572
  • 83 Ishii Y. Iwahama T. Sakaguchi S. Nakayama K. Nishiyama Y. J. Org. Chem. 1996; 61: 4520
  • 84 Shi H. Yu C. Zhu M. Yan J. J. Organomet. Chem. 2015; 776: 117
  • 85 Primerano P. Cordaro M. Scala A. Tetrahedron Lett. 2013; 54: 4061
  • 86 Brown HC. Gnedin BG. Takeuchi K. Peters EN. J. Am. Chem. Soc. 1975; 97: 610
  • 87 Larock RC. Johnson PL. J. Chem. Soc., Chem. Commun. 1989; 1368
  • 88 Brunel JM. Heumann A. Buono G. Angew. Chem. Int. Ed. 2000; 39: 11
  • 89 Yuan K. Zhang TK. Hou XL. J. Org. Chem. 2005; 70: 6085
  • 90 Krishna H. Krishnamurthy SS. Methaji M. Murugavel R. Prabusankar G. Dalton Trans. 2007; 2908
  • 91 Sakuraba S. Okada T. Morimoto T. Achiwa K. Chem. Pharm. Bull. 1995; 43: 927
  • 92 Liu S. Zhou J. Chem. Commun. 2013; 49: 11758
  • 93 Penafiel I. Pastor IM. Yus M. Eur. J. Org. Chem. 2012; 3151
  • 94 Oguma K. Miura M. Satoh T. Nomura M. J. Am. Chem. Soc. 2000; 122: 10464
  • 95 Tan B.-H. Yoshikai N. Org. Lett. 2014; 16: 3392
  • 96 Kemper J. Studer A. Angew. Chem. Int. Ed. 2005; 44: 4914
  • 97 Guin J. Mück-Lichtenfeld C. Grimme S. Studer A. J. Am. Chem. Soc. 2007; 129: 4498
  • 98 Guin J. Fröhlich R. Studer A. Angew. Chem. Int. Ed. 2008; 47: 779
  • 99 Beauchemin AM. Moran J. Lebrun M.-E. Séguin C. Dimitrijevic E. Zhang L. Gorelsky SI. Angew. Chem. Int. Ed. 2008; 47: 1410
  • 100 Moran J. Gorelsky SI. Dimitrijevic E. Lebrun M.-E. Bédard A.-C. Séguin C. Beauchemin AM. J. Am. Chem. Soc. 2008; 130: 17893
  • 101 Motokura K. Nakgiri N. Mori K. Mizugaki T. Ebitani K. Jitsukawa K. Kaneda K. Org. Lett. 2006; 8: 4617
  • 102 Zhang J. Yang C.-G. He C. J. Am. Chem. Soc. 2006; 128: 1798
  • 103 Liu X.-Y. Li C.-H. Che C.-M. Org. Lett. 2006; 8: 2707
  • 104 Giner X. Nájera C. Org. Lett. 2008; 10: 2919
  • 105 Zhang Z. Lee SD. Widenhoefer RA. J. Am. Chem. Soc. 2009; 131: 5372
  • 106 Sevov CS. Zhou J. Hartwig J. J. Am. Chem. Soc. 2012; 134: 11960
  • 107 Musacchio AJ. Lainhart BC. Zhang X. Naguib SG. Sherwood TC. Knowles RR. Science 2017; 355: 727
  • 108 McBee JL. Bell AT. Tilley TD. J. Am. Chem. Soc. 2008; 130: 16562
  • 109 Wasa J. Gaspar B. Nambu H. Carreira EM. J. Am. Chem. Soc. 2006; 128: 11693
  • 110 Wei H. Qian G. Xia Y. Li K. Li Y. Li Wu. Eur. J. Org. Chem. 2007; 4471
  • 111 Michon C. Medina F. Capet F. Roussel P. Agbossou-Niedercorn F. Adv. Synth. Catal. 2010; 352: 3293
  • 112 Komeyama K. Mieno Y. Yukawa S. Morimoto T. Tanaki K. Chem. Lett. 2007; 36: 752
  • 113 Cabrero-Antonino JR. Leyva-Pérez A. Corma A. Chem. Eur. J. 2013; 19: 8627
  • 114 Zacharie B. Gagnon L. Attardo G. Connolly TP. St-Denis Y. Penney CL. J. Med. Chem. 1997; 40: 2883
  • 115 Gareiss PC. Palde PB. Hubbard RD. Miller BL. Eur. J. Org. Chem. 2007; 53
  • 116 Mac DH. Roisnel T. Branchadell V. Grée R. Synlett 2009; 1969
  • 117 Yang D. Zhang C. J. Org. Chem. 2001; 66: 4814
  • 118 Ho C.-M. Yu W.-Y. Che C.-M. Angew. Chem. Int. Ed. 2004; 43: 3303
  • 119 Rossi R. Diversi P. Lucherini A. Porri L. Tetrahedron Lett. 1974; 11: 879
  • 120 Couturier VJ.-L. Tanaka K. Leconte M. Basset J.-M. Ollivier J. Angew. Chem. 1993; 105: 99
  • 121 Katayama H. Urushima H. Ozawa F. Chem. Lett. 1999; 369
  • 122 Katayama H. Urushima H. Nishioka T. Wada C. Nagao M. Ozawa F. Angew. Chem. Int. Ed. 2000; 39: 4513
  • 123 Engl PS. Santiago CB. Gordon CP. Liao W.-C. Fedorov A. Copéret C. Sigman M. Togni A. J. Am. Chem. Soc. 2017; 139: 13117
  • 124 Khan RK. M. Torker S. Hoveyda AH. J. Am. Chem. Soc. 2013; 135: 10258
  • 125 Koh MJ. Khan RK. M. Torker S. Hoveyda AH. Angew. Chem. Int. Ed. 2014; 53: 1968
  • 126 Nguyen ST. Johnson JK. Grubbs R. H. J. Am. Chem. Soc. 1992; 114: 3974
  • 127 Nguyen ST. Grubbs RH. J. Am. Chem. Soc. 1993; 115: 9858
  • 128 Kanaoka S. Grubbs RH. Macromolecules 1995; 28: 4707
  • 129 Wu X.-X. Shen Y. Chen W.-L. Chen S. Hao X.-H. Xia Y. Xu P.-F. Liang Y.-M. Chem. Commun. 2015; 51: 8031
  • 130 Catellani M. Frignani F. Rangoni A. Angew. Chem. Int. Ed. 1997; 36: 119
  • 131 Mitsudo K. Thansandote P. Wilhelm T. Mariampillai B. Lautens M. Org. Lett. 2006; 8: 3939
  • 132 Qureshi Z. Schlundt W. Lautens M. Synthesis 2015; 47: 2446
  • 133 Zhang H. Chen P. Liu G. Angew. Chem. Int. Ed. 2014; 53: 10174
  • 134 Sui X. Ding L. Gu Z. Chem. Commun. 2016; 52: 13999
  • 135 Lautens M. Piguel S. Angew. Chem. Int. Ed. 2000; 39: 1045
  • 136 Lautens M. Paquin JF. Piguel S. J. Org. Chem. 2002; 67: 3972
  • 137 Pache S. Lautens M. Org. Lett. 2003; 5: 4827
  • 138 Jafarpour F. Lautens M. Org. Lett. 2006; 8: 3601
  • 139 Rudolph A. Rackelmann N. Lautens M. Angew. Chem. Int. Ed. 2007; 46: 1485
  • 140 Lautens M. Paquin JF. Piguel S. Dahlmann M. J. Org. Chem. 2001; 66: 8127
  • 141 Martins A. Marquardt U. Kasravi N. Alberico D. Lautens M. J. Org. Chem. 2006; 71: 4937
  • 142 Alberico D. Rudolph A. Lautens M. J. Org. Chem. 2007; 72: 775
  • 143 Wilhelm T. Lautens M. Org. Lett. 2005; 7: 4053
  • 144 Mariampillai B. Alberico D. Bidau V. Lautens M. J. Am. Chem. Soc. 2006; 128: 11436
  • 145 Candito DA. Lautens M. Org. Lett. 2010; 12: 3312
  • 146 Bressy C. Alberico D. Lautens M. J. Am. Chem. Soc. 2005; 127: 13148
  • 147 Lei C. Jin X. Zhou JS. Angew. Chem. Int. Ed. 2015; 54: 13397
  • 148 Lei C. Jin X. Zhou J. ACS Catal. 2016; 6: 1635
  • 149 Faccini F. Motti E. Catellani M. J. Am. Chem. Soc. 2004; 126: 78
  • 150 Motti E. Faccini F. Ferrari I. Catellani M. Ferraccioli R. Org. Lett. 2006; 8: 3967
  • 151 Motti E. Della Ca’ N. Deledda S. Fava E. Panciroli F. Catellani M. Chem. Commun. 2010; 46: 4291
  • 152 Catellani M. Motti E. Baratta S. Org. Lett. 2001; 3: 3611
  • 153 Ferraccioli R. Carenzi D. Rombolà O. Catellani M. Org. Lett. 2004; 6: 4759
  • 154 Candito DA. Lautens M. Angew. Chem. Int. Ed. 2009; 48: 6713
  • 155 Maestri G. Della Ca’ N. Catellani M. Chem. Commun. 2009; 4892
  • 156 Pan S. Wu F. Yu R. Chen W. J. Org. Chem. 2016; 81: 1558
  • 157 Xu S. Jiang J. Ding L. Fu Y. Gu Z. Org. Lett. 2018; 20: 325
  • 158 Fan X. Gu Z. Org. Lett. 2018; 20: 1187
  • 159 Dong Z. Dong G. J. Am. Chem. Soc. 2013; 135: 18350
  • 160 Shi H. Babinski DJ. Ritter T. J. Am. Chem. Soc. 2015; 137: 3775
  • 161 Ye C. Zhu H. Chen Z. J. Org. Chem. 2014; 79: 8900
  • 162 Sun F. Gu Z. Org. Lett. 2015; 17: 2222
  • 163 Pan S. Ma X. Zhong D. Chen W. Liu M. Wu H. Adv. Synth. Catal. 2015; 357: 3052
  • 164 Luo B. Gao J.-M. Lautens M. Org. Lett. 2016; 18: 4166
  • 165 Whyte A. Olson ME. Lautens M. Org. Lett. 2018; 20: 345
  • 166 Jiao L. Bach T. J. Am. Chem. Soc. 2011; 133: 12990
  • 167 Jiao L. Herdtweck E. Bach T. J. Am. Chem. Soc. 2012; 134: 14563
  • 168 Jiao L. Bach T. Angew. Chem. Int. Ed. 2013; 52: 6080
  • 169 Wang XC. Gong W. Fang LZ. Zhu RY. Li S. Engle KM. Yu J.-Q. Nature 2015; 519: 334
  • 170 Shen PX. Wang XC. Wang P. Zhu RY. Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11574
  • 171 Dong Z. Wang J. Dong G. J. Am. Chem. Soc. 2015; 137: 5887
  • 172 Wang P. Farmer ME. Huo X. Jain P. Shen PX. Ishoey M. Bradner JE. Wisniewski SR. Eastgate MD. Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 9269
  • 173 Ding Q. Ye S. Cheng G. Wang P. Farmer ME. Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 417
  • 174 Wang P. Farmer ME. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 5125
  • 175 Li GC. Wang P. Farmer ME. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 6874
  • 176 Engle KM. Thuy-Boun PS. Dang M. Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 8183
  • 177 Wang P. Li GC. Jain P. Farmer ME. He J. Shen PX. Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14092
  • 178 Shi H. Wang P. Suzuki S. Farmer ME. Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14876
  • 179 Hua Y. Nguyen HH. Scaggs WR. Jeon J. Org. Lett. 2013; 15: 3412
  • 180 Chen Z. Hu L. Zeng F. Zhu R. Zheng S. Yu Q. Huang J. Chem. Commun. 2017; 53: 4258