Synlett, Table of Contents Synlett 2018; 29(12): 1654-1658DOI: 10.1055/s-0037-1610145 letter © Georg Thieme Verlag Stuttgart · New York Iodine-Mediated Vicinal Difunctionalization of Alkenes: A Convenient Method for Building C–Se and C–S Bonds Junxing Wang College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. of China Email: jieyan87@zjut.edu.cn , Weijian Sheng College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. of China Email: jieyan87@zjut.edu.cn , Jie Yan* College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. of China Email: jieyan87@zjut.edu.cn › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A novel I2-mediated procedure is developed for building C–Se and C–S bonds simultaneously from alkenes, diselenides and sodium dithiocarbamates. This difunctionalization of alkenes is carried out in the presence of I2 and air, and exhibits good characteristics such as being transition-metal-free, requiring mild reaction conditions and simple procedures. The approach provides the product β-selanylethyl dithiocarbamates with high regioselectivity and in good yields. A plausible electrophilic addition mechanism is hypothesized. Key words Key wordsdifunctionalization of alkene - β-selanylethyl dithiocarbamate - alkene - diselenide - iodine-mediated Full Text References References and Notes 1a Wirth T. Tetrahedron 1999; 55: 1 1b Wirth T. Angew. Chem. Int. Ed. 2000; 39: 3740 1c Freudendahl DM. Shahzad SA. Wirth T. Eur. J. Org. Chem. 2009; 1649 1d Mukherjee AJ. Zade SS. Singh HB. Sunoj RB. Chem. Rev. 2010; 110: 4357 1e Letavayova L. Vlckova V. Brozmanova J. Toxicology 2006; 227: 1 1f Erkekoglu P. Rachidi W. Yuzugullu OG. Giray B. Favier A. Ozturk M. Hincal F. Toxicol. Appl. Pharmacol. 2010; 248: 52 1g Zeni G. Stracke MP. Nogueira CW. Braga AL. Menezes PH. Stefani HA. Org. Lett. 2004; 6: 1135 1h Erkekoglu P. Giray B. Rachidi W. Hininger-Favier I. Roussel A.-M. Favier A. Hincal F. Environ. Toxicol. 2014; 29: 98 1i Wallace K. Kelsey KT. Schned A. Morris JS. Andrew AS. Karagas MR. Cancer Prev. Res. 2009; 2: 70 1j Erkekoglu P. Chao M.-W. Ye W. Ge J. Trudel LJ. Skipper PL. Kocer-Gumusel B. Engelward BP. Wogan GN. Tannenbaum SR. Food Chem. Toxicol. 2014; 72: 98 1k Noro M. Fujita S. Wada T. Org. Lett. 2013; 15: 5948 1l Zhang A. Sun J. Lin C. Hu X. Liu W. J. Agric. Food Chem. 2014; 62: 1477 1m He H. Wang Z.-M. Li X.-J. Yu Q. Wang Z.-W. Tetrahedron 2016; 72: 7594 1n Zhu Y.-Y. Chen T.-Q. Li S. Shimada S. Han L.-B. J. Am. Chem. Soc. 2016; 138: 5825 1o Jesberger M. Davis TP. Barner L. Synthesis 2003; 1929 1p Huang PJ. Wang F. Liu J. Anal. Chem. 2015; 87: 6890 1q Lauer AM. Mahmud F. Wu J. J. Am. Chem. Soc. 2011; 133: 9119 1r Gao Y.-X. Tang G. Cao Y. Zhao Y.-F. Synthesis 2009; 1081 2a Romero RM. Woste TH. Muniz K. Chem. Asian J. 2014; 9: 972 2b Beccalli EM. Broggini G. Gazzola S. Mazza A. Org. Biomol. Chem. 2014; 12: 6767 2c Zhao B. Peng X. Zhu Y. Ramirez TA. Cornwall RG. Shi Y. J. Am. Chem. Soc. 2011; 133: 20890 2d Zhang H.-W. Song Y.-C. Zhao J.-B. Zhang JP. Zhang Q. Angew. Chem. Int. Ed. 2014; 53: 11079 2e Chen C. Hecht MB. Kavara A. Brennessel WW. Mercado BQ. Weix DJ. Holland PL. J. Am. Chem. Soc. 2015; 137: 13244 3a Back TG. In Organoselenium Chemistry . Liotta D. Wiley; New York: 1987 3b Paulmier C. Selenium Reagents and Intermediates in Organic Synthesis. In Organic Chemistry Series. Pergamon Press; Oxford U. K.: 1986 3c Schmid GH. Garratt DG. In The Chemistry of Double-bonded Functional Groups. Supplement A . Patia S. Wiley; New York: 1977 3d Wirth T. Organoselenium Chemistry: Synthesis and Reactions. Wiley-VCH; Weinheim: 2012 3e Conner ES. Crocker KE. Fernando RG. Fronczek FR. Stanley GG. Ragains JR. Org. Lett. 2013; 15: 5558 4a Toshimitsu A. Nakano K. Mukai T. Tamao K. J. Am. Chem. Soc. 1996; 118: 2756 4b Tiecco M. Testaferri L. Santi C. Tomassini C. Marini F. Bagnoli L. Temperini A. Tetrahedron: Asymmetry 2002; 13: 429 4c Tang E. Wang W.-L. Zhao Y.-J. Zhang M. Dai X. Org. Lett. 2016; 18: 176 4d Sun K. Wang X. Lv Y.-H. Li G. Jiao H.-Z. Dai C.-W. Li Y.-Y. Zhang C. Liu L. Chem. Commun. 2016; 8471 4e Toshimitsu A. Hayashi G. Terao K. Uemura S. J. Chem. Soc., Perkin Trans. 1 1986; 343 4f Wang X.-L. Li H.-J. Zhu M. Yan J. RSC Adv. 2017; 7: 15709 5a Hasser A. Amarasekara AS. Tetrahedron Lett. 1987; 28: 5185 5b Tiecco M. Testaferri L. Santi C. Tomassini C. Marini F. Bagnoli L. Temperini A. Angew. Chem. Int. Ed. 2003; 42: 3131 5c Tiecco M. Testaferri L. Santi C. Tomassini C. Santoro S. Marini F. Bagnoli L. Temperini A. Tetrahedron 2007; 63: 12373 5d Tingoli M. Tiecco M. Chianelli D. Balducci R. Temperini A. J. Org. Chem. 1991; 56: 6809 6a Toshimitsu A. Aoai T. Owada H. Uemura S. Okano M. Tetrahedron 1985; 41: 5301 6b Tingoli M. Diana R. Panunz B. Tetrahedron Lett. 2006; 47: 7529 6c Tiecco M. Testaferri L. Temperini A. Synlett 2001; 7167 6d Berlin S. Ericsson C. Engman L. J. Org. Chem. 2003; 68: 8386 6e Movassagh B. Farshbaf S. Synthesis 2010; 33 6f Ganesh V. Srinivasan C. Synthesis 2009; 3267 7a Taniguchi N. J. Org. Chem. 2006; 71: 7874 7b Pandey G. Rao VJ. Bhalero UT. J. Chem. Soc., Chem. Commun. 1989; 416 7c Tiecco M. Testaferri L. Tingoli M. Bagnoli L. Marini F. Santi C. Temperini A. Gazz. Chim. Ital. 1996; 126: 635 7d Das JP. Roy UK. Roy S. Organometallics 2005; 24: 6136 7e Yu L. Chen B. Huang X. Tetrahedron Lett. 2007; 48: 925 7f Shi M. Wang B.-Y. Li J. Eur. J. Org. Chem. 2005; 759 7g Shi H.-W. Yu C. Zhu M. Yan J. J. Organomet. Chem. 2015; 776: 117 8a Tiecco M. Testaferri L. Tingoli M. Bartoli D. Balducci R. J. Org. Chem. 1990; 55: 429 8b Yoshshida M. Sasage S. Kawamura K. Suzuki T. Kamigata N. Bull. Chem. Soc. Jpn. 1991; 64: 416 8c Yu C. Shi H.-W. Yan J. ARKIVOC 2015; (v): 266 8d Mironov YV. Sherman AA. Nifantiev NE. Tetrahedron Lett. 2004; 45: 9107 8e Vieira AA. Azeredo JB. Godoi M. Santi C. da Silva Junior EN. Braga AL. J. Org. Chem. 2015; 80: 2120 9a Wang H. Huang D. Cheng D. Li L. Shi Y. Org. Lett. 2011; 13: 1650 9b Gao X. Pan X. Gao J. Jiang H. Yuan G. Li Y. Org. Lett. 2015; 17: 1038 9c Yang F.-L. Wang F.-X. Wang T.-T. Wang Y.-J. Tian S.-K. Chem. Commun. 2014; 2111 9d Yu J. Gao C. Song Z. Yang H. Fu H. Org. Biomol. Chem. 2015; 13: 4846 9e Guan H. Wang H. Huang D. Shi Y. Tetrahedron 2012; 68: 2728 10a Wang H. Lu Q. Qian C. Liu C. Liu W. Chen K. Lei A. Angew. Chem. Int. Ed. 2016; 55: 1094 10b Keshali T. Yadav VK. Srivastava VP. Yadav LD. S. Green Chem. 2014; 16: 3986 10c Xi H. Deng B. Zong Z. Liu S. Li Z. Org. Lett. 2015; 17: 1180 10d Yadav VK. Srivastava VP. Yadav LD. S. Tetrahedron Lett. 2015; 56: 2892 10e Kamal A. Reddy DR. J. Mol. Catal. A: Chem. 2007; 272: 26 10f Surendra K. Krishnavine NS. Sridhar R. Rao KR. J. Org. Chem. 2006; 71: 5819 11a Taniguchi N. J. Org. Chem. 2006; 71: 7874 11b Muangkaew C. Katrum P. Kanchanarugee P. Pohmakotr M. Reutrakul V. Soorukram D. Jaipetch T. Kuhakarn C. Tetrahedron 2013; 69: 8847 11c Katrum P. Chiampanichayakul S. Korworapan K. Pohmakotr M. Reutrakul V. Jaipetch T. Kuhakarn C. Eur. J. Org. Chem. 2010; 5633 11d Yadav LD. S. Awasthi C. Tetrahedron Lett. 2009; 50: 3801 12a Zheng Y. He Y. Rong G. Zhang X. Weng Y. Dong K. Xu X. Mao J. Org. Lett. 2015; 17: 5444 12b Cui H. Liu X. Wei W. Yang D. He C. Zhang T. Wang H. J. Org. Chem. 2016; 81: 2252 12c Li L. Wang H. Huang D. Shi Y. Tetrahedron 2012; 68: 9853 12d Li L. Li Z. Huang D. Wang H. Shi Y. RSC Adv. 2013; 3: 4523 13a Usugi S.-i. Yorimitsu H. Shinokubo H. Oshima K. Org. Lett. 2004; 6: 601 13b Matsumoto K. Fujie S. Suga S. Nokami T. Yushida J.-i. Chem. Commun. 2009; 5448 13c Caserio MC. Fisher CL. Kim JK. J. Org. Chem. 1985; 50: 4390 13d Wang X.-R. Chen F. Tetrahedron 2011; 67: 4547 13e Li H.-Y. Shan C.-C. Tung C.-H. Xu Z.-H. Chem. Sci. 2017; 8: 2610 14a Dohi T. Kita Y. Chem. Commun. 2009; 2073 14b Uyanik M. Suzuki D. Yasui T. Ishihara K. Angew. Chem. Int. Ed. 2011; 50: 5331 14c Uyanik M. Okamoto H. Yasui T. Ishihara K. Science 2010; 328: 1376 14d Ge W. Wey Y. Green Chem. 2012; 14: 2066 14e Duan Y.-N. Zhang Z. Zhang C. Org. Lett. 2016; 18: 6176 14f Azeredo JB. Godoi M. Martins GM. Silveira CC. Braga AL. J. Org. Chem. 2014; 79: 4125 14g Ambethkar S. Vellimalai M. Padmini V. Bhuvanesh N. New J. Chem. 2017; 41: 75 14h Xu D.-D. Sun W.-W. Xie Y.-L. Liu J.-K. Liu B. Zhou Y.-B. Wu B. J. Org. Chem. 2016; 81: 11081 15 Difunctionalizations of Alkenes Mediated by I2; Typical Procedure In a mixed solvent H2O/EtOH (1:1, 3.0 mL), alkene 1 (0.24 mmol), diselenide 2 (0.10 mmol), sodium dithiocarbamate 3 (0.6 mmol) and I2 (0.1 mmol) were added successively. The suspension mixture was vigorously stirred at r.t. for 6 h. Upon completion, the reaction was quenched by addition of sat. aq. Na2S2O3 (2 mL) and H2O (5 mL). The mixture was extracted with CH2Cl2 (3 × 5 mL) and the combined organic phase was dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was then purified on a silica gel plate (PE/EtOAc, 6:1) to furnish product 4. 1-Phenyl-2-phenylselanyletheyl Diethylcarbamodithioate (4a): Yield: 74 mg (91%); yellow oil. IR (film): 3057, 2979, 2931, 1485, 1418, 1268, 1206, 736, 694 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.52 (d, J = 3.7 Hz, 2 H), 7.37–7.32 (m, 6 H), 7.25–7.22 (m, 2 H), 5.37 (d, J = 6.3 Hz, 1 H), 4.13–3.92 (m, 2 H), 3.92 (dd, J = 11.9, 4.8 Hz, 1 H), 3.72–3.67 (m, 2 H), 3.48 (dd, J = 11.9, 11.0 Hz, 1 H), 1.30–1.20 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 193.6, 138.8, 133.6, 130.0, 128.9, 128.6, 128.0, 127.1, 55.7, 49.3, 46.7, 33.5, 12.6, 11.6. MS (ESI): m/z = 432 [M+23]+. HRMS: m/z [M+23]+ calcd for C19H23NNaS2Se: 432.0335; found: 432.0321. 2-(Phenylselanyl)-1-(p-tolyl)ethyl Diethylcarbamodithioate (4b): Yield: 72 mg (85%); yellow oil. IR (film): 3052, 2976, 2931, 1487, 1417, 1268, 1206, 827, 737, 691 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.56–7.53 (m, 2 H), 7.29–7.22 (m, 5 H), 7.15 (d, J = 5.0 Hz, 2 H), 5.32 (dd, J = 11.2, 4.7 Hz, 1 H), 4.05–3.94 (m, 2 H), 3.93 (dd, J = 11.8, 4.7 Hz, 1 H), 3.72–3.67 (m, 2 H), 3.49 (d, J = 11.5 Hz, 1 H), 2.36 (s, 3 H), 1.29–1.23 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 193.7, 137.7, 135.6, 133.6, 129.3, 129.2, 128.8, 128.4, 127.0, 55.3, 49.2, 46.6, 33.4, 21.2, 12.6, 11.6. MS (ESI): m/z = 446 [M+23]+; HRMS (ESI): m/z [M+23]+ calcd for C20H25NNaS2Se: 446.0491; found: 446.0478. 1-(4-Chlorophenyl)-2-phenylselanyletheyl Diethylcarbamodithioate (4d): Yield: 149 mg (55%); yellow oil. IR (film): 3054, 2956, 2920, 2849, 1486, 1416, 1269, 1205, 1091, 1011, 829, 735, 690 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.51–7.47 (m, 2 H), 7.29–7.22 (m, 7 H), 5.36–5.30 (m, 1 H), 4.10–3.94 (m, 2 H), 3.87 (dd, J = 10.0, 5.0 Hz, 1 H), 3.71–3.62 (m, 2 H), 3.40 (dd, J = 12.1, 11.0 Hz, 1 H), 1.28–1.23 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 193.1, 137.5, 133.7, 130.0, 128.9, 128.7, 127.2, 55.0, 49.4, 46.7, 33.3, 12.6, 11.6; MS (ESI): m/z = 444 [M+1]+; HRMS (ESI): m/z [M+1]+ calcd for C19H23ClNS2Se: 444.0126; found: 444.0098. 1-[2-(Phenylselanyl)indanyl] Diethylcarbamodithioate (4g): Yield: 61 mg (73%); yellow oil. IR (film): 3069, 2973, 2920, 2849, 1485, 1416, 1268, 1205, 909, 732, 690 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.64–7.60 (m, 2 H), 7.42 (t, J = 5.0 Hz, 1 H), 7.32–7.22 (m, 5 H), 7.19 (d, J = 5.0 Hz, 1 H), 5.60 (d, J = 5.0 Hz, 1 H), 4.30–4.24 (m, 1 H), 4.10–4.00 (m, 2 H), 3.70–3.65 (m, 2 H), 3.56 (dd, J = 16.8, 6.5 Hz, 1 H), 3.05 (dd, J = 16.8, 3.1 Hz, 1 H), 1.34–1.30 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 194.6, 143.0, 139.7, 135.8, 131.5, 128.8, 128.4, 127.8, 127.2, 125.8, 124.9, 61.4, 49.3, 47.9, 46.9, 38.6, 12.6, 11.7. MS (ESI): m/z = 422 [M+1]+. HRMS (ESI): m/z [M+1]+ calcd for C20H24NS2Se: 422.0515; found: 422.0511. 16a Muangkaew C. Katrun P. Kanchanarugee P. Pohmakotr M. Reutrakul V. Soorukram D. Jaipetch T. Kuhakarn C. Tetrahedron 2013; 69: 8847 16b Huang Z.-Z. Huang X. Huang Y.-Z. J. Chem. Soc., Perkin Trans. 1 1995; 95 16c Toshimitsu A. Uemura S. Okano M. J. Chem. Soc., Chem. Commun. 1982; 87