Subscribe to RSS
DOI: 10.1055/s-0037-1610165
Synthetic Strategies for the Regioselective Functionalization of Tribenzotriquinacenes
The authors thank the Fonds der Chemischen Industrie (Liebig fellowship for F.B.), the DFG (BE4808/2-1) and the Bavarian Ministry for Science, Research and the Arts (Collaborative Research Network ‘Solar Technologies Go Hybrid’ and Bavarian Polymer Institute) for their generous financial support.Publication History
Received: 24 April 2018
Accepted: 27 April 2018
Publication Date:
18 June 2018 (online)
Abstract
The rigid molecular scaffold of the tribenzotriquinacenes (TBTQs) has emerged as a versatile structural platform that possesses unique geometrical features and allows for an orthogonal arrangement of organic functional substituents or convex-concave interactions. In this review, we summarize and discuss important synthetic strategies for a regioselective functionalization at the four distinct positions of the TBTQ basic framework, namely, apical, bridgehead, ortho, and outer rim.
1 Introduction
2 Structure and Synthesis of TBTQs
3 Bridgehead Functionalization
4 Outer Rim Functionalization
5 ortho-Functionalization
6 Apical Functionalization
7 Conclusion and Outlook
-
References
- 1 Narita A. Wang X.-Y. Feng X. Müllen K. Chem. Soc. Rev. 2015; 44: 6616
- 2 Wu J. Pisula W. Müllen K. Chem. Rev. 2007; 107: 718
- 3 Wu Y.-T. Siegel JS. Chem. Rev. 2006; 106: 4843
- 4 Kuck D. Angew. Chem. Int. Ed. 1984; 23: 508
- 5 Kuck D. Lindenthal T. Schuster A. Chem. Ber. 1992; 125: 1449
- 6 Kuck D. Chem. Rev. 2006; 106: 4885
- 7 Woodward RB. Fukunaga T. Kelly RC. J. Am. Chem. Soc. 1964; 86: 3162
- 8 Beuerle F. Gole B. Angew. Chem. Int. Ed. 2018; 57: 4850
- 9 Kuck D. Pure Appl. Chem. 2006; 78: 749
- 10 Kuck D. Chem. Rec. 2015; 15: 1075
- 11 Kuck D. Schuster A. Krause RA. Tellenbröker J. Exner CP. Penk M. Bögge H. Müller A. Tetrahedron 2001; 57: 3587
- 12 Tellenbröker J. Kuck D. Beilstein J. Org. Chem. 2011; 7: 329
- 13 Mughal EU. Kuck D. Org. Biomol. Chem. 2010; 8: 5383
- 14 Henne S. Bredenkötter B. Volkmer D. Appl. Surf. Sci. 2015; 356: 645
- 15 Beaudoin D. Rominger F. Mastalerz M. Angew. Chem. Int. Ed. 2016; 55: 15599
- 16 Wang T. Zhang Y.-F. Hou Q.-Q. Xu W.-R. Cao X.-P. Chow H.-F. Kuck D. J. Org. Chem. 2013; 78: 1062
- 17 Klotzbach S. Scherpf T. Beuerle F. Chem. Commun. 2014; 50: 12454
- 18 Klotzbach S. Beuerle F. Angew. Chem. Int. Ed. 2015; 54: 10356
- 19 Beuerle F. Klotzbach S. Dhara A. Synlett 2016; 27: 1133
- 20 Beaudoin D. Rominger F. Mastalerz M. Angew. Chem. Int. Ed. 2017; 56: 1244
- 21 Bredenkötter B. Henne S. Volkmer D. Chem.–Eur. J. 2007; 13: 9931
- 22 Henne S. Bredenkötter B. Dehghan Baghi AA. Schmid R. Volkmer D. Dalton Trans. 2012; 41: 5995
- 23 Bredenkötter B. Grzywa M. Alaghemandi M. Schmid R. Herrebout W. Bultinck P. Volkmer D. Chem.–Eur. J. 2014; 20: 9100
- 24 Wang T. Li Z.-Y. Xie A.-L. Yao X.-J. Cao X.-P. Kuck D. J. Org. Chem. 2011; 76: 3231
- 25 Henne S. Bredenkötter B. Alaghemandi M. Bureekaew S. Schmid R. Volkmer D. ChemPhysChem 2014; 15: 3855
- 26 Mughal EU. Kuck D. Chem. Commun. 2012; 48: 8880
- 27 Ip H.-W. Ng C.-F. Chow H.-F. Kuck D. J. Am. Chem. Soc. 2016; 138: 13778
- 28 Ip H.-W. Chow H.-F. Kuck D. Org. Chem. Front. 2017; 4: 817
- 29 Brandenburg JG. Grimme S. Jones PG. Markopoulos G. Hopf H. Cyranski MK. Kuck D. Chem.–Eur. J. 2013; 19: 9930
- 30 Markopoulos G. Henneicke L. Shen J. Okamoto Y. Jones PG. Hopf H. Angew. Chem. Int. Ed. 2012; 51: 12884
- 31 Beaudoin D. Rominger F. Mastalerz M. Synthesis 2015; 47: 3846
- 32 Tomaschautzky J. Neumann B. Stammler H.-G. Mitzel NW. Dalton Trans. 2017; 46: 1112
- 33 Schuster A. Kuck D. Angew. Chem. Int. Ed. 1991; 30: 1699
- 34 Kuck D. Schuster A. Ohlhorst B. Sinnwell V. de Meijere A. Angew. Chem. Int. Ed. 1989; 28: 595
- 35 Haag R. Ohlhorst B. Noltemeyer M. Schuster A. Kuck D. de Meijere A. Chem. Commun. 1993; 1727
- 36 Haag R. Kuck D. Fu X.-Y. Cook JM. de Meijere A. Synlett 1994; 340
- 37 Haag R. Ohlhorst B. Noltemeyer M. Fleischer R. Stalke D. Schuster A. Kuck D. de Meijere A. J. Am. Chem. Soc. 1995; 117: 10474
- 38 Georghiou PE. Dawe LN. Tran H.-A. Strübe J. Neumann B. Stammler H.-G. Kuck D. J. Org. Chem. 2008; 73: 9040
- 39 Langhals H. Rauscher M. Strübe J. Kuck D. J. Org. Chem. 2008; 73: 1113
- 40 Xu W.-R. Xia G.-J. Chow H.-F. Cao X.-P. Kuck D. Chem.–Eur. J. 2015; 21: 12011
- 41 Dhara A. Beuerle F. Chem.–Eur. J. 2015; 21: 17391
- 42 Vile J. Carta M. Bezzu CG. McKeown NB. Polym. Chem. 2011; 2: 2257
- 43 Harig M. Neumann B. Stammler H.-G. Kuck D. Eur. J. Org. Chem. 2004; 2381
- 44 Zhou L. Zhang T.-X. Li B.-R. Cao X.-P. Kuck D. J. Org. Chem. 2007; 72: 6382
- 45 Linke J. Bader N. Tellenbröker J. Kuck D. Synthesis 2018; 50: 175
- 46 Tellenbröker J. Kuck D. Angew. Chem. Int. Ed. 1999; 38: 919
- 47 Li Z.-M. Hu D. Wei J. Qi Q. Cao X.-P. Chow H.-F. Kuck D. Synthesis 2018; 50: 1457
- 48 Zhang Y.-F. Cao X.-P. Chow H.-F. Kuck D. J. Org. Chem. 2017; 82: 179
- 49 Greschner W. Neumann B. Stammler H.-G. Gröger H. Kuck D. Angew. Chem. Int. Ed. 2015; 54: 13764
- 50 Xu W.-R. Chow H.-F. Cao X.-P. Kuck D. J. Org. Chem. 2014; 79: 9335
- 51 Niu W.-X. Wang T. Hou Q.-Q. Li Z.-Y. Cao X.-P. Kuck D. J. Org. Chem. 2010; 75: 6704
- 52 Wang T. Hou Q.-Q. Teng Q.-F. Yao X.-J. Niu W.-X. Cao X.-P. Kuck D. Chem.–Eur. J. 2010; 16: 12412
- 53 Beaudoin D. Rominger F. Mastalerz M. Eur. J. Org. Chem. 2016; 4470
- 54 Strübe J. Neumann B. Stammler H.-G. Kuck D. Chem.–Eur. J. 2009; 15: 2256
- 55 Li Z.-M. Li Y.-W. Cao X.-P. Chow H.-F. Kuck D. J. Org. Chem. 2018; 83: 3433
- 56 Dullaghan CA. Carpenter GB. Sweigart DA. Kuck D. Fusco C. Curci R. Organometallics 2000; 19: 2233
- 57 Kirchwehm Y. Damme A. Kupfer T. Braunschweig H. Krueger A. Chem. Commun. 2012; 48: 1502
- 58 Kuck D. Schuster A. Fusco C. Fiorentino M. Curci R. J. Am. Chem. Soc. 1994; 116: 2375
- 59 Dhara A. Weinmann J. Krause A.-M. Beuerle F. Chem.–Eur. J. 2016; 22: 12473