Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(17): 3408-3419
DOI: 10.1055/s-0037-1610175
DOI: 10.1055/s-0037-1610175
paper
Thermolytic Synthesis of Naphthalenes via Intramolecular Cyclocondensation of o-Phenylallylbenzaldehydes
The authors would like to thank the Ministry of Science and Technology of the Republic of China for the financial support (MOST 106-2628-M-037-001-MY3).Further Information
Publication History
Received: 28 February 2018
Accepted after revision: 04 May 2018
Publication Date:
13 June 2018 (online)
Abstract
The development of intramolecular carbonyl-ene type cyclocondensation of oxygenated o-phenylallylbenzaldehydes in refluxing decalin is reported. The facile and easy-to-operate thermolytic rearrangement procedure generates substituted naphthalenes in good to excellent yields.
Key words
carbonyl-ene type - cyclocondensation - o-carbonyl allylbenzenes - substituted naphthalenesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610175. Scanned photocopies of NMR (CDCl3) spectral data for all compounds and X-ray analysis data of 4c and 4m are provided.
- Supporting Information
- CIF File
-
References
- 1a Skowronek P. Gawronski J. Org. Lett. 2008; 10: 4755
- 1b Hodacova J. Budesínsky M. Org. Lett. 2007; 9: 5641
- 1c Wang Z. Nour HF. Roch LM. Guo M. Li W. Baldridge KK. Sue AC. H. Olson MA. J. Org. Chem. 2017; 82: 2472
- 1d Wang Y. Ready JM. Org. Lett. 2012; 14: 2308
- 1e Joshi MS. Pigge FC. Org. Lett. 2016; 18: 5916
- 1f Pemberton N. Jakobsson L. Almqvist F. Org. Lett. 2006; 8: 935
- 1g Braun RU. Zeitler K. Muller TJ. J. Org. Lett. 2000; 2: 4181
- 1h Schulze M. Scott DE. Scherer A. Hampel F. Hamilton RJ. Gray MR. Tykwinski RR. Stryker JM. Org. Lett. 2015; 17: 5930
- 1i Kawakami T. Uehata K. Suzuki H. Org. Lett. 2000; 2: 413
- 1j Götzinger AC. Thebeling FA. Hoppe C. Muller TJ. J. J. Org. Chem. 2016; 81: 10328
- 1k Overman LE. Wolfe JP. J. Org. Chem. 2001; 66: 3167
- 1l Miyahara Y. Ito YN. J. Org. Chem. 2014; 79: 6801
- 1m Nelson SG. Spencer KL. J. Org. Chem. 2000; 65: 1227
- 1n Le Falher L. Ayad OB. Ziyaret O. Mamontov A. Botuha C. Thorimbert S. Slowinski F. J. Org. Chem. 2014; 79: 6579
- 1o Bergner I. Wiebe C. Meyer N. Opatz T. J. Org. Chem. 2009; 74: 8243
- 1p Garcia JL. Fernandez-Ibanez RM. A. Maestro MC. J. Org. Chem. 2006; 71: 7683
- 1q Mross G. Holtz F. Langer P. J. Org. Chem. 2006; 71: 8045
- 1r Kumar A. Thadkapally S. Menon RS. J. Org. Chem. 2015; 80: 11048
- 2a Jagdale AR. Park JH. Youn SW. J. Org. Chem. 2011; 76: 7204
- 2b Johnson KF. Schmidt AC. Stanley LM. Org. Lett. 2015; 17: 4654
- 3a Chan C.-K. Wang H.-S. Tsai Y.-L. Chang M.-Y. RSC Adv. 2017; 7: 29321
- 3b Qin Y. Luo S. Cheng J.-P. Org. Lett. 2014; 16: 5032
- 3c Kuninobu Y. Tatsuzaki T. Matsuki T. Takai K. J. Org. Chem. 2011; 76: 7005
- 4a Chang M.-Y. Wu M.-H. Tetrahedron 2013; 69: 129
- 4b Janssen-Muller D. Schedler M. Fleige M. Daniliuc CG. Glorius F. Angew. Chem. Int. Ed. 2015; 54: 12492
- 4c Makra F. Rohloff JC. Muehldorf AV. Link JO. Tetrahedron Lett. 1995; 36: 6815
- 4d Hattori T. Takeda A. Suzuki K. Koike N. Koshiishi E. Miyano S. J. Chem. Soc., Perkin Trans. 1 1998; 3661
- 4e Fu J.-m. Snieckus V. Can. J. Chem. 2000; 78: 905
- 5a de Koning CB. Manzini SS. Michael JP. Mmutlane EM. Tshabidi TR. van Otterlo WA. L. Tetrahedron 2005; 61: 555
- 5b de Koning CB. Michael JP. Rousseau AL. J. Chem. Soc., Perkin Trans. 1 2000; 787
- 5c de Koning CB. Michael JP. Rousseau AL. Tetrahedron Lett. 1997; 38: 893
- 6a de Koning CB. Rousseau AL. van Otterlo WA. L. Tetrahedron 2003; 59: 7
- 6b Kotha S. Somnath-Halder SM. Tetrahedron 2008; 64: 10775
- 6c Kobaisi MA. Bhosale SV. Latham K. Raynor AM. Bhosale SV. Chem. Rev. 2016; 116: 11685
- 6d Suraru SL. Würthner F. Angew. Chem. Int. Ed. 2014; 53: 7428
- 7a Ukita T. Nakamura Y. Kubo A. Yamomoto Y. Takahashi M. Kotera J. Ikeo T. J. Med. Chem. 1999; 42: 1293
- 7b Yeo H. Li Y. Fu L. Zhu J.-L. Gullen EA. Dutschman GE. Lee Y. Chung R. Huang E.-S. Austin DJ. Cheng Y.-C. J. Med. Chem. 2005; 48: 534
- 7c Shen W. Zou X. Chen M. Liu P. Shen Y. Huang S. Guo H. Zhang L. Eur. J. Pharmacol. 2011; 667: 330
- 7d Aszno J. Chiba K. Tada M. Yoshii T. Phytochemistry 1996; 42: 713
- 8a Ward RS. Nat. Prod. Rep. 1999; 16: 75
- 8b Apers S. Vlietinck A. Pieters L. Phytochem. Rev. 2003; 2: 201
- 8c Abdissa N. Pan F. Gruhonjic A. Grafenstein J. Fitzpatrick P. Landberg AG. Rissanen K. Yenesew A. Erdelyi M. J. Nat. Prod. 2016; 79: 2181
- 8d Ding L. Fotso S. Li F. Qin S. Laatsch H. J. Nat. Prod. 2008; 71: 1068
- 9a Lin K.-T. Kuo H.-M. Sheu H.-S. Lai C.-K. Tetrahedron 2013; 69: 9045
- 9b Tanaka M. Elias B. Barton JK. J. Org. Chem. 2010; 75: 2423
- 9c Thalacker C. Roger C. Wurthner F. J. Org. Chem. 2006; 71: 8098
- 9d Rodriguez JG. Tejedor JL. J. Org. Chem. 2002; 67: 7631
- 9e Chowdhury S. Georghiou PE. J. Org. Chem. 2002; 67: 6808
- 9f Roger C. Wurthner F. J. Org. Chem. 2007; 72: 8070
- 10a Chang M.-Y. Wu M.-H. Lee T.-W. Tetrahedron 2012; 68: 6224
- 10b Chang M.-Y. Tai H.-Y. Chen Y.-L. Hsu R.-T. Tetrahedron 2012; 68: 7941
- 10c Chang M.-Y. Chan C.-K. Lin S.-Y. Hsu R.-T. Tetrahedron 2012; 68: 10272
- 10d Chang M.-Y. Chan C.-K. Lin S.-Y. Tetrahedron 2013; 69: 1532
- 10e Chan C.-K. Chan Y.-L. Chang M.-Y. Tetrahedron 2016; 72: 547
- 10f Chan C.-K. Tsai Y.-L. Chang M.-Y. Org. Lett. 2017; 19: 1358
- 11a Marcuccio SM. Rodopoulos M. Weigold H. US Patent US 7 122 699, 2006
- 11b Brown HC. Racherla US. Pellechia PJ. J. Org. Chem. 1990; 55: 1868
- 11c Roush WR. Hoong LK. Palmer MA. J. Park JC. J. Org. Chem. 1990; 55: 4109
- 11d Hoffmann RW. Zeiss HJ. J. Org. Chem. 1981; 46: 1309
- 12 CCDC 1584196 (4c) and 1584195 (4m) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
Examples of cyclocondensation reactions; for macrocycles, see:
For dihydroquinolines, see:
For triazoles, see:
For pyridones, see:
For benzoazepines, see:
For naphthoquinolines, see:
For pyrazoquinolines, see:
For pyrazoles, see:
For guanidines, see:
For cycloalkenes, see:
For β-lactones, see:
For triazines, see:
For pyrroles, see:
For dihydropyranols, see:
For furans, see:
For chromenes, see:
Metal-mediated cyclocondensation of o-carbonyl allylbenzenes; for Au(I)/Ag(I), see:
For Rh(I), see:
Lewis acid mediated cyclocondensation of o-carbonyl allylbenzenes; for Bi(OTf)3, see:
For Cu(OTf)2, see:
For In(OTf)3, see:
Base-mediated cyclocondensation of o-carbonyl allylbenzenes; for DBU, see:
For KHMDS, see:
For NaOMe, see:
For MeLi, see:
Light-mediated cyclocondensation of o-carbonyl allylbenzenes, see:
For reviews on naphthalenes, see:
For bioactive molecules with the core naphthalene skeleton, see:
For natural products with the core naphthalene skeleton, see:
For functionalized materials with the core naphthalene skeleton, see:
For synthetic applications of o-formyl- and o-aroylallylbenzenes from our group, see:
Examples of synthesis of phenylallylboronic pinacol ester, crotylboronic pinacol ester, and related derivatives, see: