Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(12): 1578-1582
DOI: 10.1055/s-0037-1610176
DOI: 10.1055/s-0037-1610176
letter
Synthesis of (2-Aminophenyl)(naphthalen-2-yl)methanones via Intramolecular Rearrangement of (E)-3-Styrylquinolin-4(1H)-ones under Irradiation with 365 nm UV Light
We are grateful for the financial support from the National Natural Science Foundation of China and the Fundamental Funds Research for the Central Universities.Further Information
Publication History
Received: 21 April 2018
Accepted after revision: 13 May 2018
Publication Date:
19 June 2018 (online)
Abstract
A highly efficient and environmentally friendly synthesis of (2-aminophenyl)(naphthalen-2-yl)methanones was developed. The (2-aminophenyl)(naphthalen-2-yl)methanone derivatives were obtained in high yields (up to 96%) by the irradiation of (E)-3-styrylquinolin-4(1H)-ones in EtOH–H2O (7:1) with UV light (365 nm) at room temperature under Ar atmosphere. The demonstrated photoinduced intramolecular rearrangement has advantages over other transition-metal-catalyzed reactions, e.g. no requirement of additives, green solvent, broad substrate scope, and high atom efficiency.
Key words
(2-aminophenyl)(naphthalen-2-yl)methanones - (E)-3-styrylquinolin-4(1H)-ones - photo rearrangement reaction - photochemical reaction - synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610176.
- Supporting Information
-
References and Notes
- 1 Present Address: Department of Molecular Medicine, Beckman Research Institute of City of Hope Duarte, CA 91010, USA.
- 2 Liou JP. Chang CW. Song JS. Yang YN. Yeh CF. Tseng HY. Lo YK. Chang YL. Chang CM. Hsieh HP. J. Med. Chem. 2002; 45: 2556
- 3 Singh RK. Prasad DN. Bhardwaj TR. Med. Chem. Res. 2013; 22: 5901
- 4 Welstead WJ. Moran HW. Stauffer HF. Turnbull LB. Sancilio LF. J. Med. Chem. 1979; 22: 1074
- 5 Maleki B. Seresht ER. Ebrahimi Z. Org. Prep. Proced. Int. 2015; 47: 149
- 6 Cai S. Zeng J. Bai Y. Liu XW. J. Org. Chem. 2012; 77: 801
- 7 Yan Y. Wang Z. Chem. Commun. 2011; 47: 9513
- 8 Yan Y. Shi M. Niu B. Meng X. Zhu C. Liu G. Chen T. Liu Y. RSC Adv. 2016; 6: 36192
- 9 Castellano S. Taliani S. Viviano M. Milite C. Da PE. Costa B. Barresi E. Bruno A. Cosconati S. Marinelli L. Greco G. Novellino E. Sbardella G. Da SF. Martini C. J. Med. Chem. 2014; 57: 2413
- 10 Jung DI. Song JH. Lee EJ. Kim YY. Lee DH. Lee YG. Hahn JT. Tetrahedron Lett. 2009; 50: 5805
- 11 Earmme T. Ahmed E. Jenekhe SA. Adv. Mater. 2010; 22: 4744
- 12 Chen J. Ye L. Su W. Biomol. Chem. 2014; 12: 8204
- 13 Chen J. Li J. Su W. Molecules 2014; 19: 6439
- 14 Aidene M. Belkessam F. Soulé JF. Doucet H. ChemCatChem 2016; 8: 1583
- 15 Luo S. Hu Z. Zhu Q. Org. Chem. Front. 2016; 3: 364
- 16 Gaslonde T. Covello F. Velazquez-Alonso L. Léonce S. Pierré A. Pfeiffer B. Michel S. Tillequin F. Eur. J. Med. Chem. 2011; 46: 1861
- 17 Hook BD. A. Dohle W. Hirst PR. Pickworth M. Berry MB. Booker-Milburn KI. J. Org. Chem. 2005; 70: 7558
- 18 Roth HD. Angew. Chem. Int. Ed. Engl. 1989; 28: 1193
- 19 Oelgemöller M. Chem. Rev. 2016; 116: 9664
- 20 Zhang J. Zhang X. Wang T. Yao X. Wang P. Wang P. Jing S. Liang Y. Zhang Z. J. Org. Chem. 2017; 82: 12097
- 21 Han J. Wang T. Liang Y. Li Y. Li C. Wang R. Feng S. Zhang Z. Org. Lett. 2017; 19: 3552
- 22 Kang Y. Wang T. Liang Y. Zhang Y. Wang R. Zhang Z. RSC Adv. 2017; 7: 44333
- 23 Yang Q. Wang R. Han J. Li C. Wang T. Liang Y. Zhang Z. RSC Adv. 2017; 7: 43206
- 24 Wei W. Li C. Wang T. Liu D. Zhang Z. Tetrahedron 2016; 72: 5037
- 25 Xue P. Du Z. Wang T. Zhang Z. Synthesis 2015; 47: 3385
- 26 Wang Q. Zhang Z. Du Z. Hua H. Chen S. Green Chem. 2013; 15: 1048
- 27 Fan J. Wang T. Li C. Wang R. Lei X. Liang Y. Zhang Z. Org. Lett. 2017; 19: 5984
- 28 Seixas RS. G. R. Silva AM. S. Alkorta I. Elguero J. Monatsh. Chem. 2011; 142: 731
- 29 Seixas RS. G. R. Silva AM. S. Cavaleiro JA. S. Synlett 2010; 15: 2257
- 30 Seubert CK. Sun Y. Thiel WR. Dalton Trans. 2009; 38: 4971
- 31 Ho JH. Lee YW. Chen YZ. Chen PS. Liu WQ. Ding YS. Tetrahedron 2013; 69: 7325
- 32 General Procedure for the Synthesis of (2-Aminophenyl)(naphthalen-2-yl)methanones (2a–2u): (E)-3-styrylquinolin-4(1H)-ones 1 (0.20 mmol, 5 mM) was dissolved or suspended in EtOH–H2O (7:1, 40 mL) in four quartz tubes (4 × 10 mL). The solution/suspension was bubbled with argon (3 × 2 min) and sealed. The resulting mixture was irradiated with a UV lamp (365 nm, 10 W) at r.t. for 9.0 h (1a–1k, 1t, 1u) or 4.5 h (1l–1s). The reaction mixture in four quartz tubes was combined and volatiles were removed under reduced pressure. The oily residue was column chromatographed (petroleum ether/EtOAc = 20:1) to give (2-aminophenyl)(naphthalen-2-yl)methanones 2.
- 33 Irie M. Fukaminato T. Matsuda K. Kobatake S. Chem. Rev. 2014; 114: 12174
- 34 Ho TI. Wu JY. Wang SL. Angew. Chem. Int. Ed. 1999; 38: 2558
- 35 Ho TI. Ho JH. Wu JY. J. Am. Chem. Soc. 2000; 122: 8575
- 36 Samori S. Hara M. Ho TI. Tojo S. Kawai K. Endo M. Fujitsuka M. Majima T. J. Org. Chem. 2005; 70: 2708
- 37 Lvov AG. Shirinyan VZ. Chem. Heterocycl. Compd. 2016; 52: 658
- 38 Lvov AG. Shirinian VZ. Zakharov AV. Krayushkin MM. Kachala VV. Zavarzin IV. J. Org. Chem. 2015; 80: 11491