Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(23): 4637-4644
DOI: 10.1055/s-0037-1610231
DOI: 10.1055/s-0037-1610231
paper
Palladium-Catalyzed Reductive Coupling of Nitroarenes with Phenols leading to N-Cyclohexylanilines
We are grateful for financial support from the post-funded projects of Hunan University of Science and International Cooperation Project of Qinghai Province (2018-HZ-806, 2018-HZ-706).Further Information
Publication History
Received: 17 May 2018
Accepted after revision: 12 July 2018
Publication Date:
16 August 2018 (online)
Abstract
A direct and efficient palladium-catalyzed reductive coupling reaction of nitroarenes with phenols has been developed. A series of N-cyclohexylaniline derivatives was easily and efficiently obtained in moderate to good yields via C–N bond formation by the simple use of safe and inexpensive sodium formate as the hydrogen donor.
Key words
green chemistry - palladium catalysis - reductive coupling - nitroarene - phenol - cyclohexylamineSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610231.
- Supporting Information
-
References and Notes
- 1a Rylander PN. Hydrogenation Methods . Academic; London: 1985: 104-117
- 1b Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Wiley; New York: 2001: 315-387
- 2a Adams JP. Paterson JR. J. Chem. Soc., Perkin Trans. 1 2000; 3695
- 2b Lawrence SA. Amines: Synthesis Properties and Applications . Cambridge University Press; Cambridge: 2004
- 2c Corma A. Serna P. Science (Washington, D. C.) 2006; 313: 332
- 2d Ono N. The Nitro Group in Organic Synthesis . Wiley-VCH; New York: 2011
- 3a Xiao F. Liu Y. Tang C. Deng G.-J. Org. Lett. 2012; 14: 984
- 3b Pereira MF. Thiéry V. Org. Lett. 2012; 14: 4754
- 3c Nguyen TB. Ermolenko L. Al-Mourabit A. Org. Lett. 2013; 15: 4218
- 3d Wang H. Cao X. Xiao F. Liu S. Deng G.-J. Org. Lett. 2013; 15: 4900
- 3e Wen J. Wei W. Xue S. Yang D. Lou Y. Gao C. Wang H. J. Org. Chem. 2015; 80: 4966
- 3f Imrich H.-G. Conrad J. Bubrin D. Beifuss U. J. Org. Chem. 2015; 80: 2319
- 3g Cui H. Wei W. Yang D. Zhang J. Xu Z. Wen J. Wang H. RSC Adv. 2015; 5: 84657
- 3h Zhao F. Li B. Huang H. Deng G.-J. RSC Adv. 2016; 6: 13010
- 4a Magano J. Dunetz JR. Chem. Rev. 2011; 111: 2177
- 4b Ricci A. Amino Group Chemistry: From Synthesis to the Life Sciences. Wiley-VCH; Weinheim: 2008
- 4c Wei W. Wen J. Yang D. Sun X. You J. Suo Y. Wang H. Tetrahedron 2013; 69: 10747
- 4d Wei W. Wen J. Yang D. Du J. You J. Wang H. Green Chem. 2014; 16: 2988
- 4e Wei W. Wen J. Yang D. Liu X. Guo M. Dong R. Wang H. J. Org. Chem. 2014; 79: 422
- 4f Wei W. Cui H. Yang D. Yue H. He C. Zhang Y. Wang H. Green Chem. 2017; 19: 5608
- 5 Deng G. Chen W. Li C.-J. Adv. Synth. Catal. 2009; 351: 353
- 6a Yamane Y. Liu X. Hamasaki A. Ishida T. Haruta M. Yokoyama T. Tokunaga M. Org. Lett. 2009; 11: 5162
- 6b Sreedhar B. Reddy P. Devi D. J. Org. Chem. 2009; 74: 8806
- 7a Feng C. Liu Y. Peng S. Shuai Q. Deng G. Li C.-J. Org. Lett. 2010; 12: 4888
- 7b Liu Y. Chen W. Feng C. Deng G. Chem. Asian J. 2011; 6: 1142
- 7c Gelman F. Blum J. Avnir D. New J. Chem. 2003; 27: 205
- 7d Tang C.-H. He L. Liu Y.-M. Cao Y. He H.-Y. Fan K.-N. Chem. Eur. J. 2011; 17: 7172
- 8a Xie Y. Liu S. Liu Y. Wen Y. Deng G.-J. Org. Lett. 2012; 14: 1692
- 8b Sutter M. Duclos M.-C. Guicheret B. Raoul Y. Metay E. Lemaire M. ACS Sustainable Chem. Eng. 2013; 1: 1463
- 8c Wei W. Wen J. Yang D. Guo M. Wang Y. You J. Wang H. Chem. Commun. 2015; 51: 768
- 9a Upton BM. Kasko AM. Chem. Rev. 2016; 116: 2275
- 9b Li C. Zhao X. Wang A. Huber GW. Zhang T. Chem. Rev. 2015; 115: 11559
- 9c Huber GW. Corma A. Angew. Chem. Int. Ed. 2007; 46: 7184
- 10a Su B. Cao Z.-C. Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 10b Tobisu M. Chatani N. Acc. Chem. Res. 2015; 48: 1717
- 10c Tobisu M. Morioka T. Ohtsuki A. Chatani N. Chem. Sci. 2015; 6: 3410
- 10d Zarate C. Manzano R. Martin R. J. Am. Chem. Soc. 2015; 137: 6754
- 10e Cornella J. Zarate C. Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 10f Tasker SZ. Standley EA. Jamison TF. Nature (London) 2014; 509: 299
- 10g Chen Z. Zeng H. Gong H. Wang H. Li C.-J. Chem. Sci. 2015; 6: 4174
- 10h Chen Z. Zeng H. Girard SA. Wang F. Chen N. Li C.-J. Angew. Chem. Int. Ed. 2015; 54: 14487
- 10i Jumde VR. Petricci E. Petrucci C. Santillo N. Taddei M. Vaccaro L. Org. Lett. 2015; 17: 3990
- 10j Meng Q. Hou M. Liu H. Song J. Han B. Nat. Commun. 2017; 8: 14190
- 10k Qiu Z. Li J.-S. Li C.-J. Chem. Sci. 2017; 8: 6954
- 10l Bisz E. Szostak M. ChemSusChem 2017; 10: 3964
- 11 Entwistle ID. Jackson AE. Johnstone RA. W. Telford RP. J. Chem. Soc., Perkin Trans. 1 1977; 443
- 12a Li W. Yin G. Huang L. Xiao Y. Fu Z. Xin X. Liu F. Li Z. He W. Green Chem. 2016; 18: 4879
- 12b Wu C. Xin X. Fu Z.-M. Xie L.-Y. Liu K.-J. Wang Z. Li W. Yuan Z.-H. He W.-M. Green Chem. 2017; 19: 1983
- 12c Xie L.-Y. Duan Y. Lu L.-H. Li Y.-J. Peng S. Wu C. Liu K.-J. Wang Z. He W.-M. ACS Sustainable Chem. Eng. 2017; 5: 10407
- 12d Xie L.-Y. Li Y.-J. Qu J. Duan Y. Hu J. Liu K.-J. Cao Z. He W.-M. Green Chem. 2017; 19: 5642
- 12e Liu K.-J. Fu Y.-L. Xie L.-Y. Wu C. He W.-B. Peng S. Wang Z. Bao W.-H. Cao Z. Xu X. He W.-M. ACS Sustainable Chem. Eng. 2018; 6: 4916
- 12f Liu K.-J. Jiang S. Lu L.-H. Tang L.-L. Tang S.-S. Tang H.-S. Tang Z. He W.-M. Xu X. Green Chem. 2018; 20: 3038
- 12g Wu C. Wang Z. Hu Z. Zeng F. Zhang X.-Y. Cao Z. Tang Z. He W.-M. Xu X.-H. Org. Biomol. Chem. 2018; 16: 3177
- 12h Wu C. Wang J. Zhang X.-Y. Jia G.-K. Cao Z. Tang Z. Yu X. Xu X. He W.-M. Org. Biomol. Chem. 2018; 16: 5050
- 12i Xie L.-Y. Qu J. Peng S. Liu K.-J. Wang Z. Ding M.-H. Wang Y. Cao Z. He W.-M. Green Chem. 2018; 20: 760
- 12j Wu C. Lu L.-H. Peng A.-Z. Jia G.-K. Peng C. Cao Z. Tang Z. He W.-M. Xu X. Green Chem. 2018; 20: 3686
- 12k Xie L.-Y. Peng S. Lu L.-H. Hu J. Bao W.-H. Zeng F. Tang Z. Xu X. He W.-M. ACS Sustainable Chem. Eng. 2018; 6: 7989
- 13 Rajagopal S. Spatola AF. J. Org. Chem. 1995; 60: 1347
- 14a Liu H. Jiang T. Han B. Liang S. Zhou Y. Science (Washington, D. C.) 2009; 326: 1250
- 14b Zhu J.-F. Tao G.-H. Liu H.-Y. He L. Sun Q.-H. Liu H.-C. Green Chem. 2014; 16: 2664
- 14c Wang Y. Yao J. Li H. Su D. Antonietti M. J. Am. Chem. Soc. 2011; 133: 2362
- 14d Makowski P. Cakan RD. Antonietti M. Goettmann F. Titirici MM. Chem. Commun. 2008; 999
- 14e Li Y. Xu X. Zhang P. Gong Y. Li H. Wang Y. RSC Adv. 2013; 3: 10973
- 14f Chen A. Li Y. Chen J. Zhao G. Ma L. Yu Y. ChemPlusChem 2013; 78: 1370
For selected examples of reduction of phenols, see: