Synthesis 2018; 50(24): 4883-4888
DOI: 10.1055/s-0037-1610238
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Spiro Barbiturates and Meldrum’s Acid Derivatives via a [2+2+2] Cyclotrimerization

Sambasivarao Kotha*
Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai-400076, India   Email: srk@chem.iitb.ac.in
,
Gaddamedi Sreevani
Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai-400076, India   Email: srk@chem.iitb.ac.in
› Author Affiliations
S.K. thanks Department of Science and Technology for the award of a J. C. Bose fellowship and Praj Industries for the award of chair professor (Green Chemistry). G.S. thanks the CSIR-New Delhi for the award of research fellowship. We also thank DST, New Delhi for the financial support.
Further Information

Publication History

Received: 30 May 2018

Accepted after revision: 19 July 2018

Publication Date:
14 August 2018 (online)


Abstract

Intermolecular [2+2+2] cycloaddition of propargyl halides with 1,6-diynes was accomplished with a catalytic amount of Mo(CO)6 to generate benzyl halo barbiturates and Meldrum’s acid derivatives containing a spiro linkage. Furthermore, we have extended this methodology to synthesize linearly fused Meldrum’s acid derivatives via Diels–Alder reaction using rongalite chemistry.

Supporting Information

 
  • References

    • 1a McNab H. Chem. Soc. Rev. 1978; 7: 345
    • 1b Oikawa Y. Sugano K. Yonemitsu O. J. Org. Chem. 1978; 43: 2087
    • 1c Dumas AM. Fillion E. Acc. Chem. Res. 2010; 43: 440
    • 1d Pair E. Cadart T. Levacher V. Brière JF. ChemCatChem 2016; 8: 1882
    • 2a Mahulikar PP. Mane RB. J. Chem. Res. 2006; 15
    • 2b Okano M. Fukamiya N. Lee KH. Stud. Nat. Prod. Chem. 1990; 7: 369
    • 2c Mata FZ. Martinez MB. Perez JA. G. Carbohydr. Res. 1992; 225: 159
    • 2d Chang CC. Huang X. Synthesis 1984; 224
    • 3a Bojarski JT. Mokrosz JL. Barton HJ. Paluchowska MH. Adv. Heterocycl. Chem. 1985; 38: 229
    • 3b López-Muñoz F. Ucha-Udabe R. Alamo C. Neuropsychiatr. Dis. Treat. 2005; 1: 329
    • 4a Sriram D. Bal TR. Yogeeswari PJ. J. Pharm. Pharm. Sci. 2005; 8: 565
    • 4b Girgis AS. Farag H. Ismail SM. N. George RF. Eur. J. Med. Chem. 2011; 46: 4964
    • 4c Lyons KE. Pahwa R. CNS Drugs 2008; 22: 1037
    • 4d Barakat A. Islam MS. Al-Majid AM. Ghabbour HA. Fun HK. Javed K. Imad R. Yousuf S. Choudhary MI. Wadood A. Bioorg. Med. Chem. 2015; 23: 6740
    • 4e Sudha S. Lakshmana MK. Pradhan N. Pharmacol. Biochem. Behav. 1996; 54: 633
    • 5a Thetford D. Chorlton AP. Hardman J. Dyes Pigm. 2003; 59: 185
    • 5b Kulinich AV. Derevyanko NA. Ishchenko AA. Russ. J. Gen. Chem. 2006; 76: 1441
    • 6a Ziarani GM. Aleali F. Lashgari N. RSC Adv. 2016; 6: 50895
    • 6b Gerencsér J. Dormán G. Darvas F. QSAR Comb. Sci. 2006; 25: 439
  • 7 Zheng Y. Tice CM. Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
    • 8a Kotha S. Manivannan E. Ganesh T. Sreenivasachary N. Deb A. Synlett 1999; 1618
    • 8b Pradhan R. Patra M. Behera AK. Mishra BK. Behera RK. Tetrahedron 2006; 62: 779
    • 8c Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 8d Franz AK. Hanhan NV. Ball-Jones NR. ACS Catal. 2013; 3: 540
    • 8e Kotha S. Panguluri NR. Ali R. Eur. J. Org. Chem. 2017; 5316
    • 9a Tanaka K. Transition-Metal-Mediated Aromatic Ring Construction. Wiley-VCH; Weinheim: 2013
    • 9b Grotjahn DB. Comprehensive Organometallic Chemistry II. Vol. 12. Pergamon; Oxford: 1995
    • 9c Bönnemann H. Brijoux W. Transition Metals for Organic Synthesis . Wiley-VCH; Weinheim: 1998. Vol. 1
    • 9d Collman JP. Hegedus LS. Norton JR. Finke RG. Principles and Applications of Organotransition Metal Chemistry . Oxford University Press; Oxford: 1987
    • 9e More AA. Ramana CV. J. Org. Chem. 2016; 81: 3400
    • 9f Bhatt D. Chowdhury H. Goswami A. Org. Lett. 2017; 19: 3350
    • 9g Chowdhury H. Goswami A. Org. Biomol. Chem. 2017; 15: 5824
    • 9h Paymode DJ. Ramana CV. ACS Omega 2017; 2: 5591
    • 9i Kotha S. Brahmachary E. Lahiri K. Eur. J. Org. Chem. 2005; 4741
    • 9j Yamamoto Y. Curr. Org. Chem. 2005; 9: 503
    • 9k Inglesby PA. Evans PA. Chem. Soc. Rev. 2010; 39: 2791
    • 9l Aubert C. Malacria M. Ollivier C. Science of Synthesis: Stereoselective Synthesis . de Vries JG. Evans PA. Molander GA. Thieme; Stuttgart: 2011. 3rd ed. 145-242
  • 11 Perekalin DS. Karslyan EE. Trifonova EA. Konovalov AI. Loskutova NL. Nelyubina YV. Kudinov AR. Eur. J. Inorg. Chem. 2013; 481
    • 12a Kotha S. Sreevani G. Tetrahedron Lett. 2015; 56: 5903
    • 12b Kotha S. Sreevani G. Tetrahedron Lett. 2018; 59: 1996
    • 12c Kotha S. Sreevani G. ACS Omega 2018; 3: 1850
    • 12d Kotha S. Sreevani G. Heterocycles 2017; 95: 1204
    • 12e Kotha S. Sreevani G. ChemistrySelect 2017; 2: 10804
    • 13a Nishida M. Shiga H. Mori M. J. Org. Chem. 1998; 63: 8606
    • 13b Ardizzoia GA. Brenna S. LaMonica G. Maspero A. Masciocchi N. J. Organomet. Chem. 2002; 649: 173
    • 13c Szymańska-Buzar T. Glowiak T. Czeluśniak I. J. Organomet. Chem. 1999; 585: 215
    • 13d Tamm M. Dreßel B. Urban V. Lügger T. Inorg. Chem. Commun. 2002; 5: 837
    • 13e Liu Y. Zhou L. Xi C. Acta Chim. Sin. 2006; 64: 266
    • 13f Czeluśniak I. Kocięcka P. Szymańska-Buzar T. J. Organomet. Chem. 2012; 716: 70
    • 14a Yamamoto Y. Kitahara H. Ogawa R. Itoh K. J. Org. Chem. 1998; 63: 9610
    • 14b Perekalin DS. Trifonova EA. Petrovskii PV. Kudinov AR. Russ. Chem. Bull., Int. Ed. 2011; 60: 2110
    • 15a Kotha S. Ghosh AK. Tetrahedron Lett. 2004; 45: 2931
    • 15b Kotha S. Ganesh T. Ghosh A. Bioorg. Med. Chem. Lett. 2000; 10: 1755
    • 15c Kotha S. Brahmachary E. Sreenivasachary N. Tetrahedron Lett. 1998; 39: 4095
    • 15d Kotha S. Khedkar P. Chem. Rev. 2012; 112: 1650
    • 15e Mehta G. Kotha S. Tetrahedron 2001; 57: 625