Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(23): 4577-4590
DOI: 10.1055/s-0037-1610250
DOI: 10.1055/s-0037-1610250
feature
Chiral Pyrophosphoric Acid Catalysts for the para-Selective and Enantioselective Aza-Friedel–Crafts Reaction of Phenols
This work was financially supported by JSPS KAKENHI Grant Numbers JP26288046, JP17H03054, and JP15H05810 in Precisely Designed Catalysts with Customized Scaffolding.Further Information
Publication History
Received: 27 June 2018
Accepted after revision: 24 July 2018
Publication Date:
22 August 2018 (online)
Abstract
Chiral BINOL-derived pyrophosphoric acid catalysts were developed and used for the regio- and enantioselective aza-Friedel–Crafts reaction of phenols with aldimines. ortho/para-Directing phenols could react at the para-position selectively with moderate to good enantioselectivities. Moreover, the gram-scale transformation of a product into the key intermediate for the antifungal agent (R)-bifonazole was demonstrated.
Key words
Brønsted acid - phosphoric acid - pyrophosphoric acid - organocatalyst - aza-Friedel–Crafts reaction - phenol - regio-selectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610250.
- Supporting Information
-
References
- 1a Timperley CM. Best Synthetic Methods: Organophosphorus(V) Chemistry. Academic Press; Cambridge: 2014
- 1b Phosphorus Chemistry I: Asymmetric Synthesis and Bioactive Compounds (Topics in Current Chemistry). Montchamp J.-L. Springer; New York: 2015
- 1c Phosphorus Chemistry II, Synthetic Methods (Topics in Current Chemistry). Montchamp J.-L. Springer; New York: 2015
- 2a Corbridge DE. C. Phospahates. In Studies in Inorganic Chemistry. Vol. 20, Chap. 3. Elsevier Science B.V; Amsterdam: 1995: 169-305
- 2b Handbook of Chemistry and Physics. Haynes WM. CRC Press; Boca Raton: 2015. 96th ed. 5-91-5-92
- 3a Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
- 3b Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
- 3c Akiyama T. Chem. Rev. 2007; 107: 5744
- 3d Terada M. Synthesis 2010; 1929
- 3e Kampen D. Reisinger CM. List B. Top. Curr. Chem. 2010; 291: 395
- 3f Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
- 3g Akiyama T. Mori K. Chem. Rev. 2015; 115: 9277
- 3h Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2017; 117: 10608
- 3i Merad J. Lalli C. Bernadat G. Maury J. Masson G. Chem. Eur. J. 2018; 24: 3925
- 4a Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 4b Uraguchi D. Terada M. J. Am. Chem. Soc. 2004; 126: 5356
- 5a Chen X.-H. Zhang W.-Q. Gong L.-Z. J. Am. Chem. Soc. 2008; 130: 5652
- 5b Yu J. He L. Chen X.-H. Song J. Chen W.-J. Gong L.-Z. Org. Lett. 2009; 11: 4946
- 5c Yu J. Chen W.-J. Gong L.-Z. Org. Lett. 2010; 12: 4050
- 5d Guo C. Song J. Gong L.-Z. Org. Lett. 2013; 15: 2676
- 5e He L. Chen X.-H. Wang D.-N. Luo S.-W. Zhang W.-Q. Yu J. Ren L. Gong L.-Z. J. Am. Chem. Soc. 2011; 133: 13504
- 6a Momiyama N. Konno T. Furiya Y. Iwamoto T. Terada M. J. Am. Chem. Soc. 2011; 133: 19294
- 6b Momiyama N. Narumi T. Terada M. Chem. Commun. 2015; 51: 16976
- 6c Momiyama N. Funayama K. Noda H. Yamanaka M. Akasaka N. Ishida S. Iwamoto T. Terada M. ACS Catal. 2016; 6: 949
- 7a Ishihara K. Sakakura A. Japanese Patent JP2012-160092, 2012
- 7b Hatano M. Okamoto H. Kawakami T. Toh K. Nakatsuji H. Sakakura A. Ishihara K. Chem. Sci. 2018; 9: 6361
- 8a Uraguchi D. Sorimachi K. Terada M. J. Am. Chem. Soc. 2004; 126: 11804
- 8b Kondoh A. Ota Y. Komuro T. Egawa F. Kanomata K. Terada M. Chem. Sci. 2016; 7: 1057
- 9a Jørgensen KA. Synthesis 2003; 1117
- 9b Bandini M. Melloni A. Umani-Ronchi A. Angew. Chem. Int. Ed. 2004; 43: 550
- 9c Doyle AG. Jacobsen EN. Chem. Rev. 2007; 107: 5713
- 9d You S.-L. Cai Q. Zeng M. Chem. Soc. Rev. 2009; 38: 2190
- 9e Bandini M. Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 9f Terrasson V. de Figueiredo RM. Campagne JM. Eur. J. Org. Chem. 2010; 2635
- 9g Zeng M. You S.-L. Synlett 2010; 1289
- 10a Zhao J.-L. Liu L. Gu C.-L. Wang D. Chen Y.-J. Tetrahedron Lett. 2008; 49: 1476
- 10b Lv J. Li X. Zhong L. Luo S. Cheng J.-P. Org. Lett. 2010; 12: 1096
- 10c Hajra S. Sinha D. J. Org. Chem. 2011; 76: 7334
- 10d Yoshida M. Nemoto T. Zhao Z. Ishige Y. Hamada Y. Tetrahedron: Asymmetry 2012; 23: 859
- 10e Suzuki Y. Nemoto T. Kakugawa K. Hamajima A. Hamada Y. Org. Lett. 2012; 14: 2350
- 10f Li G.-X. Qu J. Chem. Commun. 2012; 48: 5518
- 10g Xu Q.-L. Dai L.-X. You S.-L. Org. Lett. 2012; 14: 2579
- 10h Bai S. Liu X. Wang Z. Cao W. Lin L. Feng X. Adv. Synth. Catal. 2012; 354: 2096
- 10i Kaur J. Kumar A. Chimni SS. RSC Adv. 2014; 4: 62367
- 10j Zhao Z.-L. Xu Q.-L. Gu Q. Wu X.-Y. You S.-L. Org. Biomol. Chem. 2015; 13: 3086
- 10k Ren H. Wang P. Wang L. Tang Y. Org. Lett. 2015; 17: 4886
- 10l Zhou D. Huang Z. Yu X. Wang Y. Li J. Wang W. Xie H. Org. Lett. 2015; 17: 5554
- 10m Vetica F. Marcia de Figueiredo R. Cupioli E. Gambacorta A. Loreto MA. Miceli M. Gasperi T. Tetrahedron Lett. 2016; 57: 750
- 10n Wang Y. Jiang L. Li L. Dai J. Xiong D. Shao Z. Angew. Chem. Int. Ed. 2016; 55: 15142
- 10o Shikora JM. Chemler SR. Org. Lett. 2018; 20: 2133
- 11a Zhao J.-L. Liu L. Gu C.-L. Wang D. Chen Y.-J. Tetrahedron Lett. 2008; 49: 1476
- 11b Shao L. Hu X.-P. Org. Biomol. Chem. 2017; 15: 9837
- 12a Ralston AW. Ingle A. McCorkle MR. Bauer ST. J. Org. Chem. 1940; 5: 645
- 12b Ralston AW. Ingle A. McCorkle MR. J. Org. Chem. 1942; 7: 457
- 12c Gore PH. Smith GH. Thorburn S. J. Chem. Soc. C. 1971; 650
- 13a Betti M. Gazz. Chim. Ital. 1900; 30II: 301
- 13b Betti M. Gazz. Chim. Ital. 1900; 30II: 310
- 13c Betti M. Gazz. Chim. Ital. 1903; 33II: 1
- 13d Cardellicchio C. Capozzi MA. M. Naso F. Tetrahedron: Asymmetry 2010; 21: 507
- 14 Very recently, Shao reported a catalytic enantioselective aza-FC reaction of phenols with aldimines with the use of chiral phosphoric acid catalysts. ortho-Adducts were selectively obtained with high enantioselectivities. See ref. 10n.
- 15 To determine whether or not overreaction/decomposition of 6a and 7a would occur with the use of strong acids, we used either isolated product 6a or 7a alone in the presence of p-TsOH. As a result, overreaction/decomposition was observed in both cases, and the same unknown compounds as were observed under the standard reaction conditions (Table 1, entry 8) were obtained.
- 16 Hoffmann S. Seayad AM. List B. Angew. Chem. Int. Ed. 2005; 44: 7424
- 17a Nakashima D. Yamamoto H. J. Am. Chem. Soc. 2006; 128: 9626
- 17b Jiao P. Nakashima D. Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 2411
- 17c Cheon CH. Yamamoto H. J. Am. Chem. Soc. 2008; 130: 9246
- 17d Sai M. Yamamoto H. J. Am. Chem. Soc. 2015; 137: 7091
- 17e Zhou F. Yamamoto H. Angew. Chem. Int. Ed. 2016; 55: 8970
- 18a Hatano M. Maki T. Moriyama K. Arinobe M. Ishihara K. J. Am. Chem. Soc. 2008; 130: 16858
- 18b Hatano M. Hattori Y. Furuya Y. Ishihara K. Org. Lett. 2009; 11: 2321
- 18c Hatano M. Sugiura Y. Ishihara K. Tetrahedron: Asymmetry 2010; 21: 1311
- 18d Hatano M. Sugiura Y. Akakura M. Ishihara K. Synlett 2011; 1247
- 18e Hatano M. Ozaki T. Sugiura Y. Ishihara K. Chem. Commun. 2012; 48: 4986
- 18f Hatano M. Ozaki T. Nishikawa K. Ishihara K. J. Org. Chem. 2013; 78: 10405
- 18g Hatano M. Ishihara K. Asian J. Org. Chem. 2014; 3: 352
- 18h Hatano M. Nishikawa K. Ishihara K. J. Am. Chem. Soc. 2017; 139: 8424
- 18i Hatano M. Mochizuki T. Nishikawa K. Ishihara K. ACS Catal. 2018; 8: 349
- 18j Kurihara T. Satake S. Hatano M. Ishihara K. Yoshino T. Matsunaga S. Chem. Asian J. 2018; 13
- 18k Satake S. Kurihara T. Nishikawa K. Mochizuki T. Hatano M. Ishihara K. Yoshino T. Matsunaga S. Nat. Catal. 2018; 1: 585
- 19 Unfortunately, we have not yet been able to synthesize chiral bis(phosphoric acid)s and thus the corresponding chiral pyrophosphoric acids with more bulky substituents (e.g., 2,4,6-i-Pr3C6H2) due to the steric constraints. With this regard, we have already discussed the synthetic difficulty of the bulky catalysts in our previous manuscript (ref. 7b).
- 20 A higher concentration (i.e., >0.1 M based on 5 in CHCl3) gave much lower enantioselectivities, whereas a lower concentration gave almost the same enantioselectivity as with the optimal concentration (0.01 M). Moreover, the effect of the reaction temperature (–40, –20, 0, and 25 °C) was also investigated. As a result, 0 °C gave better results in terms of yield and enantioselectivity than the other temperatures.
- 21 CHCl3 provided a better yield and enantioselectivity than other low-polarity solvents, such as CH2Cl2, 1,2-dichloroethane, toluene, and benzotrifluoride. In contrast, no reaction occurred when polar solvents were used, such as Et2O, THF, propionitrile, and nitroethane.
- 22 Aldimines with other N-protecting groups, such as CO2t-Bu (Boc), showed lower enantioselectivities (see Scheme 8). Relatively stable N-CO2CH2Ph (Cbz) aldimines could be used, but showed slightly lower yields with almost the same enantioselectivities as less stable NCO2Me aldimines. Moreover, no reaction occurred when NCO2CH2 (9-fluorenyl) (Fmoc), NSO2Ph, NPh, and NBn aldimines were used.
- 23 We performed the 31P NMR (CDCl3) analysis after the routine workup with Et3N. As a result, (R)-3·(Et3N)n was observed as a sole peak at –19.7 ppm, which strongly suggests that (R)-3a was intact during the reaction [cf. 31P NMR (CDCl3) spectra; (R)-3a: δ = –20.8; (R)-2a: δ = –0.4].
- 24 Compounds 6b, 6c, and 6d were subjected to X-ray analysis. See the Supporting Information for details.
- 25 As shown in Table 2 and Scheme 3, the catalytic activity of (R)-1a was lower than that of (R)-3a, and (R)-1a did not promote the reactions of 5b (0.01 M CHCl3) effectively at 0 °C for 3 h. A mixture of the corresponding adducts 6 and 7 was obtained in <5% yield.
- 26a Corelli F. Summa V. Brogi A. Monteagudo E. Botta M. J. Org. Chem. 1995; 60: 2008
- 26b Botta M. Corelli F. Gasparrini F. Messina F. Mugnaini C. J. Org. Chem. 2000; 65: 4736
- 26c Botta M. Corelli F. Manetti F. Mugnaini C. Tafi A. Pure Appl. Chem. 2001; 73: 1477
- 26d Kuriyama M. Soeta T. Hao X. Chen Q. Tomioka K. J. Am. Chem. Soc. 2004; 126: 8128
- 26e Castagnolo D. Giorgi G. Spinosa R. Corelli F. Botta M. Eur. J. Org. Chem. 2007; 3676
- 26f Petrov O. Gerova M. Petrova K. Ivanova Y. J. Heterocycl. Chem. 2009; 46: 44
- 26g Hage SE. Lajoie B. Feuillolay C. Roques C. Baziard G. Arch. Pharm. Chem. Life Sci. 2011; 344: 402
- 26h Syu J.-F. Lin H.-Y. Cheng Y.-Y. Tsai Y.-C. Ting Y.-C. Kuo T.-S. Janmanchi D. Wu P.-Y. Henschke JP. Wu H.-L. Chem. Eur. J. 2017; 23: 14515
- 27a Schmidt F. Stemmler RT. Rudolph J. Bolm C. Chem. Soc. Rev. 2006; 35: 454
- 27b Plobeck N. Delorme D. Wei Z.-Y. Yang H. Zhou F. Schwarz P. Gawell L. Gagnon H. Pelcman B. Schmidt R. Yue SY. Walpole C. Brown W. Zhou E. Labarre M. Payza K. St-Onge S. Kamassah A. Morin P.-E. Projean D. Ducharme J. Roberts E. J. Med. Chem. 2000; 43: 3878
- 27c Jolidon S. Alberati D. Dowle A. Fischer H. Hainzl D. Narquizian R. Norcross R. Pinard E. Bioorg. Med. Chem. Lett. 2008; 18: 5533
- 27d Aiman R. Gharpure MB. Curr. Sci. 1949; 18: 303
- 28a Niu L.-F. Xin Y.-C. Wang R.-L. Jiang F. Xu P.-F. Hui X.-P. Synlett 2010; 765
- 28b Sohtome Y. Shin B. Horitsugi N. Takagi R. Noguchi K. Nagasawa K. Angew. Chem. Int. Ed. 2010; 49: 7299
- 28c Liu G. Zhang S. Li H. Zhang T. Wang W. Org. Lett. 2011; 13: 828
- 28d Chauhan P. Chimni SS. Eur. J. Org. Chem. 2011; 1636
- 28e Jarava-Barrera C. Esteban F. Navarro-Ranninger C. Parra A. Alemán J. Chem. Commun. 2013; 49: 2001
- 28f Takizawa S. Hirata S. Murai K. Fujioka H. Sasai H. Org. Biomol. Chem. 2014; 12: 5827
- 28g Montesinos-Magraner M. Vila C. Blay G. Fernández I. Muñoz MC. Pedro JR. Adv. Synth. Catal. 2015; 357: 3047
- 28h Montesinos-Magraner M. Vila C. Cantón R. Blay G. Fernández I. Muñoz MC. Pedro JR. Angew. Chem. Int. Ed. 2015; 54: 6320
- 28i Poulsen PH. Feu KS. Paz BM. Jensen F. Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 8203
- 28j Montesinos-Magraner M. Cantón R. Vila C. Blay G. Fernández I. Muñoz MC. Pedro JR. RSC Adv. 2015; 5: 60101
- 28k Kumari P. Barik S. Khan NH. Ganguly B. Kureshy RI. Abdi SH. R. Bajaj HC. RSC Adv. 2015; 5: 69493
- 28l Qin L. Wang P. Zhang Y. Ren Z. Zhang X. Da C.-S. Synlett 2016; 27: 571
- 28m Vila C. Rendón-Patiño A. Montesinos-Magraner M. Blay G. Muñoz MC. Pedro JR. Adv. Synth. Catal. 2018; 360: 859
- 28n Montesinos-Magraner M. Vila C. Blay G. Pedro JR. Synthesis 2016; 48: 2151
- 29a Vidal J. Damestoy S. Guy L. Hannachi J.-C. Aubry A. Collet A. Chem. Eur. J. 1997; 3: 1691
- 29b Trost BM. Jonasson C. Angew. Chem. Int. Ed. 2003; 42: 2063
- 29c Tillman AL. Ye J. Dixon DJ. Chem. Commun. 2006; 1191
- 30 Bronner BM. Mackey JL. Houk KN. Garg NK. J. Am. Chem. Soc. 2012; 134: 13966
For reviews, see:
For seminal studies of chiral BINOL-derived phosphoric acids 1, see:
Reviews and accounts for catalytic enantioselective FC reaction:
Selected papers for ortho-selective catalytic asymmetric FC reaction of phenols with α,β-unsaturated carbonyl compounds, nitro olefins, α-keto esters, aldimines, isatins, CF3-ketimines, etc.
Only few para-selective catalytic asymmetric FC reaction of phenols has been reported:
See also see a review:
Synthesis of bifonazole:
A review for catalytic enantioselective diarylmethylamine synthesis:
Pharmacophores of diarylmethylamines are well known, see:
Recent selected papers for enantioselective Friedel–Crafts reaction of 1- and 2-naphthols:
See also for an excellent review: