Subscribe to RSS
DOI: 10.1055/s-0037-1610260
Polydopamine: An Emerging Material in the Catalysis of Organic Transformations
Financial support from the National Research, Development and Innovation Office, Hungary (NKFIH Grant FK 123760) is gratefully acknowledged. G.L. acknowledges the János Bolyai Research Scholarship from the Hungarian Academy of Sciences.Publication History
Received: 28 June 2018
Accepted after revision: 30 July 2018
Publication Date:
05 September 2018 (online)
Published as part of the special section on the Bürgenstock conference 2018
Abstract
Polydopamine, a ‘mussel-inspired’ polymer, has been explored extensively in materials science as a universal coating. However, as an easily available, stable and environmentally benign material, it has recently been discovered to demonstrate catalytic applications. In this short review, we briefly discuss the main approaches employing polydopamine in the catalysis of organic transformations. These include metal/polydopamine-type systems and metal-free approaches that exploit the acid/base properties of this versatile polymer.
1 Introduction
2 PDA and Metal Catalysis
2.1 Reduction of Nitroaryl Compounds to Anilines
2.2 Reduction of Carbonyl Compounds to Alcohols
2.3 Suzuki and Heck Coupling Reactions
2.4 Other Reactions Catalyzed by M/PDA-Type Systems
3 PDA as a Catalyst Itself
4 Conclusion
-
References
- 1 Waite JH. Tanzer ML. Science 1981; 212: 1038
- 2 Lee H. Scherer NF. Messersmith PB. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 12999
- 3 Lee H. Dellatore SM. Miller WM. Messersmith PB. Science 2007; 318: 426
- 4 Waite JH. Nat. Mater. 2008; 7: 8
- 5 Liu Y. Ai K. Lu L. Chem. Rev. 2014; 114: 5057
- 6 Ryu JH. Messersmith PB. Lee H. ACS Appl. Mater. Interfaces 2018; 10: 7523
- 7 Schanze KS. Lee H. Messersmith PB. ACS Appl. Mater. Interfaces 2018; 10: 7521
- 8 Wei Q. Zhang F. Li J. Li B. Zhao C. Polym. Chem. 2010; 1: 1430
- 9 Ball V. Del Frari D. Toniazzo V. Ruch D. J. Coll. Interface Sci. 2012; 386: 366
- 10 Du X. Li L. Li J. Yang C. Frenkel N. Welle A. Heissler S. Nefedov A. Grunze M. Levkin PA. Adv. Mater. 2014; 26: 8029
- 11 Ponzio F. Barthes J. Bour J. Michel M. Bertani P. Hemmerlé J. d’Ischia M. Ball V. Chem. Mater. 2016; 28: 4697
- 12 Hong S. Na YS. Choi S. Song IT. Kim WY. Lee H. Adv. Funct. Mater. 2012; 22: 4711
- 13 Della Vecchia NF. Avolio R. Alfè M. Errico ME. Napolitano A. d’Ischia A. Adv. Funct. Mater. 2013; 23: 1331
- 14 Liebscher J. Mrówczyński R. Scheidt HA. Filip C. Hădade ND. Turcu R. Bende A. Beck S. Langmuir 2013; 29: 10539
- 15 Lee M. Kim JU. Lee JS. Lee BI. Shin J. Park CB. Adv. Mater. 2014; 26: 4463
- 16 McCloskey BD. Park HB. Jua H. Rowe BW. Miller DJ. Freeman BD. J. Membr. Sci. 2012; 413-414: 82
- 17 Mu J. Hou C. Wang H. Li Y. Zhang Q. Zhu M. Sci. Adv. 2015; 1: e1500533
- 18 Wang B. Wang G. Zhao B. Chen J. Zhang X. Tang R. Chem. Sci. 2014; 5: 3463
- 19 Ball V. Catal. Today 2018; 301: 196
- 20 Baeza A. Guillena G. Ramón DJ. ChemCatChem 2016; 8: 49
- 21 Aditya T. Pal A. Pal T. Chem. Commun. 2015; 51: 9410
- 22 Zeng T. Zhang X. Niu H. Ma Y. Li W. Cai Y. App. Catal. B 2013; 134-135: 26
- 23 Liu R. Guo Y. Odusote G. Qu F. Priestley RD. ACS Appl. Mater. Interfaces 2013; 5: 9167
- 24 Luo J. Zhang N. Liu R. Liu X. RSC Adv. 2014; 4: 64816
- 25 Kim I. Son HY. Yang MY. Nam YS. ACS Appl. Mater. Interfaces 2015; 7: 14415
- 26 Cao J. Mei S. Jia H. Ott A. Ballauff M. Lu Y. Langmuir 2015; 31: 9483
- 27 Zhao Y. Yeh Y. Liu R. You J. Qu F. Solid State Sci. 2015; 45: 9
- 28 Ni Y. Tong G. Wang J. Li H. Chen F. Yua C. Zhou Y. RSC Adv. 2016; 6: 40698
- 29 Wei Q. Shi R. Lu D. Lei Z. RSC Adv. 2016; 6: 29245
- 30 Wu Z. Lin H. Wang Y. Yu X. Li J. Xiong Z. Wang Y. Huang Y. Chen T. Liu F. RSC Adv. 2016; 6: 62302
- 31 Yu J. Lu S. Xu W. He G. He D. Appl. Organomet. Chem. 2017; 31: 3785
- 32 Zhang J. Fang Q. Duan J. Xu H. Xu H. Xuan S. Langmuir 2018; 34: 4298
- 33 Zeng Z. Wen M. Yu B. Ye G. Huo X. Lu Y. Chen J. ACS Appl. Mater. Interfaces 2018; 10: 14735
- 34 Choi GH. Rhee DK. Park AR. Oh MJ. Hong S. Richardson JJ. Guo J. Caruso F. Yoo PJ. ACS Appl. Mater. Interfaces 2016; 8: 3250
- 35 Lu S. Yu J. Cheng Y. Wang Q. Barras A. Xu W. Szunerits S. Cornu D. Boukherroub R. Appl. Surf. Sci. 2017; 411: 163
- 36 Cao E. Duan W. Wang F. Wang A. Zheng Y. Carbohydr. Polym. 2017; 158: 44
- 37 Du L. Guo A. Cai A. Micro Nano Lett. 2018; 13: 518
- 38 Zeng Y. Liu W. Wang Z. Singamaneni S. Wang R. Langmuir 2018; 34: 4036
- 39 Song Y. Jiang H. Wang B. Kong Y. Chen J. ACS Appl. Mater. Interfaces 2018; 10: 1792
- 40 Das TK. Ganguly S. Bhawal P. Remanan S. Mondal S. Das NC. Appl. Nanosci. 2018; 8: 173
- 41 Ma J.-X. Yang H. Li S. Ren R. Li J. Zhang X. Ma J. RSC Adv. 2015; 5: 97520
- 42 Xi J. Xiao J. Xiao F. Jin Y. Dong Y. Jing F. Wang S. Sci. Rep. 2016; 6: 21904
- 43 Liu Y. Li G. Qin R. Chen D. Langmuir 2016; 32: 13675
- 44 Kunfi A. Szabó V. Mastalir Á. Bucsi I. Mohai M. Németh P. Bertóti I. London G. ChemCatChem 2017; 9: 3236
- 45 Fu P. Xiao Z. Liu Y. Wang L. Zhang X. Li G. ChemistrySelect 2018; 3: 3351
- 46 Bian S.-W. Liu S. Chang L. J. Mater. Sci. 2016; 51: 3643
- 47 Yu X. Cheng G. Zheng S.-Y. Sci. Rep. 2016; 6: 25459
- 48 Rong Y. Dandapat A. Huang Y. Sasson Y. Zhang L. Dai L. Zhang J. Guoc Z. Chen T. RSC Adv. 2016; 6: 10713
- 49 Ye W. Yu J. Zhou Y. Gao D. Wang D. Wang C. Xue D. Appl. Catal. B 2016; 181: 371
- 50 Gong W. Su L. Zhang X. Chem. Commun. 2015; 51: 6333
- 51 Bian S.-W. Liu S. Guo M.-X. Xu L.-L. Chang L. RSC Adv. 2015; 5: 11913
- 52 Zhang Q. Zhou C. Huang A. RSC Adv. 2015; 5: 91056
- 53 Guo X. Zhang M. Zheng J. Xu J. Hayat T. Alharbi NS. Xie B. Xiong S. Dalton Trans. 2017; 46: 11598
- 54 Wang J. Zhang M. Xu J. Zheng J. Hayat T. Alharbi NS. Dalton Trans. 2018; 47: 279
- 55 Feng H. Zhu X. Chen R. Liao Q. Liu J. Li L. Chem. Eng. J. 2016; 306: 1017
- 56 Chen G. Zhu X. Chen R. Liao Q. Ye D. Feng H. Liu J. Liu M. Chem. Eng. J. 2018; 334: 1897
- 57 Ma A. Xie Y. Xu J. Zeng H. Xu H. Chem. Commun. 2015; 51: 1469
- 58 Zhang M. Li G. Sun X. Jiang Y. Zhang X. J. Mater. Chem. A 2017; 5: 20789
- 59 Bakirci G. Yilmaz M. Babur E. Ozden D. Demirel G. Catal. Commun. 2017; 91: 48
- 60 Dubey AV. Kumar AV. RSC Adv. 2016; 6: 46864
- 61 Xie A. Zhang K. Wu F. Wang N. Wang Y. Wang M. Catal. Sci. Technol. 2016; 6: 1764
- 62 Kunfi A. May Z. Németh P. London G. J. Catal. 2018; 361: 84
- 63 Li Y. Xu L. Xu B. Mao Z. Xu H. Zhong Y. Zhang L. Wang B. Sui X. ACS Appl. Mater. Interfaces 2017; 9: 17155
- 64 Fei X. Kong W. Chen X. Jiang X. Shao Z. Lee JY. ACS Catal. 2017; 7: 2412
- 65 Farzad E. Veisi H. J. Ind. Eng. Chem. 2018; 60: 114
- 66 Ma R. Yang P. Ma Y. Bian F. ChemCatChem 2018; 10: 1446
- 67 Kim Y.-O. You JM. Jang H.-S. Choi SK. Jung BY. Kang O. Kim JW. Lee Y.-S. Tetrahedron Lett. 2017; 58: 2149
- 68 GhavamiNejad A. Kalantarifard A. Yang GS. Kim CS. Microporous Mesoporous Mater. 2016; 225: 296
- 69 Li K. Du M. Ji P. ACS Sustainable Chem. Eng. 2018; 6: 5636
- 70 Lei Z. Deng Y. Wang C. J. Mater. Chem. A 2018; 6: 3258
- 71 Mrówczyński R. Bunge A. Liebscher J. Chem. Eur. J. 2014; 20: 8647
- 72 Yang Z. Sun J. Liu X. Su Q. Liu Y. Li Q. Zhang S. Tetrahedron Lett. 2014; 55: 3239
- 73 Du Y. Yang H.-C. Xu X.-L. Wu J. Xu Z.-K. ChemCatChem 2015; 7: 3822
- 74 Vaish A. Vandera DJ. Richter LJ. Dimitriou M. Steffens KL. Walker ML. Chem. Commun. 2015; 51: 6591
- 75 Mrówczyński R. Nan A. Turcu R. Leistner J. Liebscher J. Macromol. Chem. Phys. 2015; 216: 211
- 76 Kim JH. Lee M. Park CB. Angew. Chem. Int. Ed. 2014; 53: 6364