Synlett 2018; 29(17): 2311-2315
DOI: 10.1055/s-0037-1610279
letter
© Georg Thieme Verlag Stuttgart · New York

Organic Photoredox Catalysis for Pschorr Reaction: A Metal-Free and Mild Approach to 6H-Benzo[c]chromenes

Jing-Yao He
,
Qi-Fan Bai
,
Chengan Jin
,
Gaofeng Feng*
Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, 312000, P. R. of China   Email: chfeng@usx.edu.cn
› Author Affiliations
Financial support from the National Natural Science Foundation of China (NO 21302130 and 21676166) and the Science Technology Department of Zhejiang Province (NO 2014C31141) are acknowledged with thanks.
Further Information

Publication History

Received: 30 July 2018

Accepted after revision: 22 August 2018

Publication Date:
12 September 2018 (online)


Abstract

An expedient organic photoredox Pschorr reaction has been developed that opens up a synthetic route to 6H-benzo[c]chromenes. The process can be performed under mild conditions by using eosin Y as a photoredox catalyst and acetonitrile as the solvent. The diazonium salts can be either preformed or generated in situ from the corresponding amines with t-BuONO. The process is amenable to gram-sale synthesis of 6H-benzo[c]chromenes, which can be further transformed into both 6H-benzo[c]chromen-6-ones through oxidation or to 6H-benzo[c]chromen-6-amine through sp3 C–H bond amination. The protocol provides an attractive route for the synthesis of a library of 6H-benzo[c]chromes.

Supporting Information

 
  • References and Notes


    • For selected reviews on photoredox catalysis, see:
    • 1a Wang C.-S. Dixneuf PH. Soulé J.-F. Chem. Rev. 2018; 118: 7532
    • 1b Zhang M. Zhu C. Ye L.-W. Synthesis 2017; 49: 1150
    • 1c Xie J. Jin H. Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193
    • 1d Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 1e Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 1f Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Acc. Chem. Res. 2016; 49: 1911
    • 1g Ghosh I. Marzo L. Das A. Shaikh R. König B. Acc. Chem. Res. 2016; 49: 1566
    • 1h Tellis JC. Kelly CB. Primer DN. Jouffroy M. Patel NR. Molander GA. Acc. Chem. Res. 2016; 49: 1429
    • 1i Courant T. Masson G. J. Org. Chem. 2016; 81: 6945
    • 1j Koike T. Akita M. Inorg. Chem. Front. 2014; 1: 562
    • 1k Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1l Narayanam JM. R. Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102

      For selected examples on Ru-catalyzed photoredox catalysis, see:
    • 2a Sha W. Deng L. Ni S. Mei H. Han J. Pan Y. ACS Catal. 2018; 8: 7489
    • 2b Key RJ. Vannucci AK. Organometallics 2018; 37: 1468
    • 2c Liang L. Xie M.-S. Wang H.-X. Niu H.-Y. Qu G.-R. J. Org. Chem. 2017; 82: 5966
    • 2d Um J. Yun H. Shin S. Org. Lett. 2016; 18: 484
    • 2e Chen Y. Feng G. Org. Biomol. Chem. 2015; 13: 4260

      For selected examples on Ir-catalyzed photoredox catalysis, see:
    • 3a Bai Q.-F. Jin C. He J.-Y. Feng G. Org. Lett. 2018; 20: 2172
    • 3b Ouyang X.-H. Cheng J. Li J.-H. Chem. Commun. 2018; 54: 8745
    • 3c ElMarrouni A. Ritts CB. Balsells J. Chem. Sci. 2018; 9: 6639
    • 3d An X.-D. Yu S. Synthesis 2018; 50: 3387
    • 3e Xu G.-Q. Xu J.-T. Feng Z.-T. Liang H. Wang Z.-Y. Qin YQ. Xu P.-F. Angew. Chem. Int. Ed. 2018; 57: 5110
    • 3f Shi L. Liu H. Huo L. Dang Y. Wang Y. Yang B. Qiu S. Tan H. Org. Chem. Front. 2018; 5: 1312
    • 3g Chatterjee T. Lee DS. Cho EJ. J. Org. Chem. 2017; 82: 4369
    • 3h Jin J. MacMillan DW. C. Nature 2015; 525: 87

      For selected examples on organic photoredox catalysis, see:
    • 4a Majek M. van Wanglin AJ. Acc. Chem. Res. 2016; 49: 2316
    • 4b Yang L. Huang Z. Li G. Zhang W. Cao R. Wang C. Xiao J. Xue D. Angew. Chem. Int. Ed. 2018; 57: 1968
    • 4c Natarajan P. Muskan M. Brar NK. Kaur JJ. Org. Chem. Front. 2018; 5: 1527
    • 4d Wu Q.-Y. Ao G.-Z. Liu F. Org. Chem. Front. 2018; 5: 2061
    • 4e Gualandi A. Rodeghiero G. Della Rocca E. Bertoni F. Marchini M. Perciaccante R. Jansen P. Cerom P. Cozzi PG. Chem. Commun. 2018; DOI: 10.1039/C8CC04048F.
    • 4f McManus JB. Onuska NP. R. Nicewicz DA. J. Am. Chem. Soc. 2018; DOI: 10.1021/jacs.8b04890.
    • 4g Xie P. Fan J. Liu Y. Wo X. Fu W. Loh T.-P. Org. Lett. 2018; 20: 3341
    • 4h Yin Y. Dai Y. Jia H. Li J. Bu L. Qiao B. Zhao X. Jiang Z. J. Am. Chem. Soc. 2018; 140: 6083
    • 4i Zhao G. Kaur S. Wang T. Org. Lett. 2017; 19: 3291
    • 4j McManus JB. Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
    • 4k Jiang J. Zhang W.-M. Dai J.-J. Xu J. Xu H.-J. J. Org. Chem. 2017; 82: 3622
    • 4l Margrey KA. McManus JB. Bonazzi S. Zecri F. Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 11288
    • 4m Griffin JD. Zeller MA. Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
    • 4n Xiao T. Dong X. Tang Y. Zhou L. Adv. Synth. Catal. 2012; 354: 3195

      Selected examples for Pschorr reaction, see:
    • 5a Pschorr R. Chem. Ber. 1896; 29: 496
    • 5b Duclos RI. Jr. Tung JS. Rapoport H. J. Org. Chem. 1984; 49: 5243
    • 5c Wassmundt FW. Kiesman WF. J. Org. Chem. 1995; 60: 196
    • 5d Zhou J. Huang L.-Z. Li Y.-Q. Du Z.-T. Tetrahedron Lett. 2012; 53: 7036
    • 5e Moorthy JN. Samanta S. J. Org. Chem. 2007; 72: 9786

      For selected examples of diazonium salts involving photoredox catalysis, see:
    • 6a Chakrabarty I. Akram MO. Biswas S. Patil NT. Chem. Commun. 2018; 54: 7223
    • 6b Yao C.-J. Sun Q. Rastogi N. König B. ACS Catal. 2015; 5: 2935
    • 6c Shu X.-Z. Zhang M. He Y. Frei H. Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
    • 6d Verberne-Sutton SD. Quarels RD. Zhai X. Garno JC. Ragains JR. J. Am. Chem. Soc. 2014; 136: 14438
    • 6e Hari DP. Hering T. König B. Org. Lett. 2012; 14: 5334
    • 6f Hering T. Hari DP. König B. J. Org. Chem. 2012; 77: 10347
    • 6g Hari DP. Schroll P. König B. J. Am. Chem. Soc. 2012; 134: 2958

      Photoredox Pschorr reactions, see:
    • 7a Cano-Yelo H. Deronzier A. J. Chem. Soc., Perkin Trans. 2 1984; 1093
    • 7b Cano-Yelo H. Deronzier A. J. Photochem. 1987; 37: 315
  • 8 For a recent report on photoredox approach to 6H-benzo[c]chromenes, see: Deng Q. Tan L. Xu Y. Liu P. Sun P. J. Org. Chem. 2018; 83: 6151
  • 9 Sun C.-L. Gu Y.-F. Huang W.-P. Shi Z.-J. Chem. Commun. 2011; 47: 9813
  • 10 Chen D. Pan F. Gao J. Yang J. Synlett 2013; 24: 2085
  • 11 Natarajan R. Kumar N. Sharma M. Org. Chem. Front. 2016; 3: 1265
  • 12 6H-Benzo[c]chromenes 2a–o: Typical Procedure A 10 mL reaction vial was charged with a magnetic stirrer bar, the appropriate diazonium salt (0.20 mmol), eosin Y (1.3 mg, 1 mol%), and anhyd MeCN (2 mL). The vial was sealed and the mixture was then bubbled with N2 for 10 min. After irradiating with 36 W green LEDs for 16 h, the mixture was purified directly by column chromatography (silica gel).
  • 13 2,7-Dimethyl-6H-benzo[c]chromene (2i) White crystalline solid; yield: 26.9 mg (64%; 0.2 mmol scale); mp 72–73 °C. IR (film): 2923, 1501, 1459, 1250, 1028, 816, 736 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.58 (d, J = 8.0 Hz, 1 H), 7.55 (d, J = 1.6 Hz, 1 H), 7.29 (dd, J = 8.0, 7.6 Hz, 1 H), 7.14 (d, J = 7.6 Hz, 1 H), 7.06 (dd, J = 8.4, 1.6 Hz, 1 H), 6.91 (d, J = 8.0 Hz, 1 H), 5.16 (s, 2 H), 2.39 (s, 3 H), 2.33 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 152.3, 133.1, 131.3, 130.2, 130.0, 129.9, 129.4, 127.8, 123.9, 122.8, 119.8, 116.8, 65.6, 20.9, 18.5. GC/MS: m/z (%) = 209 (100) [M – H]+, 210 (72) [M]+. HRMS (CI): m/z [M]+ Calcd for C15H14O: 210.1045; found: 210.1048.