Subscribe to RSS
DOI: 10.1055/s-0037-1610285
DFT-Assisted Design and Evaluation of Bifunctional Amine/Pyridine-Oxazoline Metal Catalysts for Additions of Ketones to Unactivated Alkenes and Alkynes
American Chemical Society Petroleum Research Fund (55732-DNI1)Publication History
Received: 19 July 2018
Accepted: 28 August 2018
Publication Date:
02 October 2018 (online)
Abstract
Bifunctional catalyst systems for the direct addition of ketones to unactivated alkenes/alkynes were designed and modeled by density functional theory (DFT). The designed catalysts possess bidentate ligands suitable for binding of pi-acidic group 10 metals capable of activating alkenes/alkynes, and a tethered organocatalyst amine to activate the ketone via formation of a nucleophilic enamine intermediate. The structures of the designed catalysts before and after C–C bond formation were optimized using DFT, and reaction steps involving group 10 metals were predicted to be significantly exergonic. A novel oxazoline precatalyst with a tethered amine separated by a meta-substituted benzene spacer was synthesized via a 10-step sequence that includes a key regioselective epoxide ring-opening step. It was combined with group 10 metal salts, including cationic Pd(II) and Pt(II), and screened for the direct addition of ketones to several alkenes and an internal alkyne. 1H NMR studies suggest that catalyst-catalyst interactions with this system via amine–metal coordination may preclude the desired addition reactions. The catalyst design approach disclosed here, and the promising calculations obtained with square planar group 10 metals, light a path for the discovery of novel bifunctional catalysts for C–C bond formation.
Key words
alkylation - alkene complexes - platinum - bifunctional catalysis - organocatalysis - ketones - DFT - catalyst designSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610285. Included are 1H and 13C NMR spectra, representative Gaussian input files, and Cartesian coordinates for select DFT-optimized structures; Figure S1: DFT optimized cis/trans ethylene coordination for precatalyst 1; Figure S2: DFT optimized Cu(I) intermediates for Table 2, entry 12; Figure S3: Conformational sampling of DFT optimized 1-complex; Table S1: Complete set of DFT calculations for C–C bond formation with variable tether lengths and positions, with both Pd and Pt; Table S2: DFT calculations for intramolecular coordination of amine to metal center for various tether lengths and positions; Table S3: DFT calculations of structures with fixed distances between enamine and ethylene.
- Supporting Information
-
References
- 1 McCartney D. Guiry PJ. Chem. Soc. Rev. 2011; 40: 5122
- 2 Xu S. Negishi E.-I. Acc. Chem. Res. 2016; 49: 2158
- 3 Hack D. Blumel M. Chauhan P. Philipps AR. Enders D. Chem. Soc. Rev. 2015; 44: 6059
- 4 Binder JT. Crone B. Haug TT. Menz H. Kirsch SF. Org. Lett. 2008; 10: 1025
- 5 Yang T. Ferrali A. Campbell L. Dixon DJ. Chem. Commun. 2008; 2923
- 6 Jensen KL. Franke PT. Arróniz C. Kobbelgaard S. Jørgensen KA. Chem. Eur. J. 2010; 16: 1750
- 7 Xiao Y.-P. Liu X.-Y. Che C.-M. Angew. Chem. Int. Ed. 2011; 50: 4937
- 8 Montaignac B. Vitale MR. Michelet V. Ratovelomanana-Vidal V. Org. Lett. 2010; 12: 2582
- 9 Montaignac B. Vitale MR. Ratovelomanana-Vidal V. Michelet V. J. Org. Chem. 2010; 75: 8322
- 10 Montaignac B. Vitale MR. Ratovelomanana-Vidal V. Michelet V. Eur. J. Org. Chem. 2011; 3723
- 11 Montaignac B. Praveen C. Vitale MR. Michelet V. Ratovelomanana-Vidal V. Chem. Commun. 2012; 48: 6559
- 12 Wang X. Widenhoefer RA. Chem. Commun. 2004; 660
- 13 Cucciolito ME. D’Amora A. Vitagliano A. Organometallics 2010; 29: 5878
- 14 Geier MJ. Gagné MR. J. Am. Chem. Soc. 2014; 136: 3032
- 15 Nguyen H. Gagné MR. ACS Catal. 2014; 4: 855
- 16 Walsh PJ. Kozlowski MC. Fundamentals of Asymmetric Catalysis USA), 2009
- 17 Mo F. Dong G. Science 2014; 345 (6192): 68
- 18 Mo F. Lim HN. Dong G. J. Am. Chem. Soc. 2015; 137: 15518
- 19 Jira R. Angew. Chem. Int. Ed. 2009; 48: 9034
- 20 McDonald RI. Liu G. Stahl SS. Chem. Rev. 2011; 111: 2981
- 21 Sigman MS. Werner EW. Acc. Chem. Res. 2012; 45: 874
- 22 Melchiorre P. Marigo M. Carlone A. Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
- 23 Fürstner A. Acc. Chem. Res. 2014; 47: 925
- 24 Porter JD. Greve E. Alsafran A. Benoit AR. Lindeman SV. Dockendorff C. Tetrahedron 2018; 74: 4823 ; ChemRxiv 2018, https://doi.org/10.26434/chemrxiv.6163430.v1
- 25 Stephan DW. Science 2016; 354 (6317): aaf7229
- 26 Hay PJ. Wadt WR. J. Chem. Phys. 1985; 82: 270
- 27 Kendall RA. Dunning TH. Jr. Harrison RJ. J. Chem. Phys. 1992; 96: 6796
- 28 Yoon NM. Brown HC. J. Am. Chem. Soc. 1968; 90: 2927
- 29 Leung C, Tomaszewski MJ, Woo S. PCT Int. Appl WO 04 60882, 2004 ; Chem. Abstr. 2004, 141, 140172.
- 30 Molander GA, Brown AR. J. Org. Chem. 2006; 71: 9681
- 31 Wang H.-Y, Huang K, De Jesús M, Espinosa S, Piñero-Santiago LE, Barnes CL, Ortiz-Marciales M. Tetrahedron: Asymmetry 2016; 27: 91
- 32 Lal GS, Pez GP, Pesaresi RJ, Prozonic FM, Cheng H. J. Org. Chem. 1999; 64: 7048
- 33 Phillips AJ, Uto Y, Wipf P, Reno MJ, Williams DR. Org. Lett. 2000; 2: 1165
- 34 Stork G, Brizzolara A, Landesman H, Szmuszkovicz J, Terrell R. J. Am. Chem. Soc. 1963; 85: 207
- 35 de Renzi A, Panunzi A, Vitagliano A, Paiaro G. J. Chem. Soc., Chem. Commun. 1976; 47
- 36 Sen A, Lai T.-W. J. Am. Chem. Soc. 1981; 103: 4627
- 37 Albietz PJ, Yang K, Lachicotte RJ, Eisenberg R. Organometallics 2000; 19: 3543
- 38 Delort E, Velluz A, Frérot E, Rubin M, Jaquier A, Linder S, Eidman KF, MacDougall BS. J. Agric. Food Chem. 2011; 59: 11752
- 39 Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. J. Cheminform. 2012; 4: 17
- 40 Kowacs T, O’Reilly L, Pan Q, Huijser A, Lang P, Rau S, Browne WR, Pryce MT, Vos JG. Inorg. Chem. 2016; 55: 2685