RSS-Feed abonnieren
DOI: 10.1055/s-0037-1610289
Stereoselective Synthesis of Tetrahydrofuran Lignans
The authors acknowledge financial support from the Thailand Research Fund (RSA6180025 and IRN58W0005), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), and the Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative.Publikationsverlauf
Received: 31. Juli 2018
Accepted after revision: 28. August 2018
Publikationsdatum:
02. Oktober 2018 (online)
Abstract
This short review aims to summarize the reports on stereoselective synthesis of naturally occurring tetrahydrofuran lignans published during the period of 2006 to 2018. The stereoselective construction of non-natural tetrahydrofuran frameworks is not included in this review.
1 Introduction
2 Stereoselective Synthesis of 2,5-Diaryltetrahydrofuran (CL5-a)
2.1 Synthesis of CL5-a via Friedel–Crafts Arylation or Nucleophilic Addition/Reduction of γ-Butyrolactones
2.2 Synthesis of CL5-a via Intramolecular Cyclization of 1,4-Diarylbutanediols
2.3 Synthesis of CL5-a via Diastereoselective Hydrogenation of Furan Derivatives
2.4 Synthesis of CL5-a via Cycloaddition Reaction of Substituted Cyclopropane Derivatives
3 Stereoselective Synthesis of 2-Aryl-4-benzyltetrahydrofuran (CL5-b)
4 Stereoselective Synthesis of 3,4-Dibenzyltetrahydrofuran (CL5-c)
5 Conclusions
-
References
- 1a Pan J.-Y. Chen S.-L. Yang M.-H. Wu J. Sinkkonen J. Zou K. Nat. Prod. Rep. 2009; 26: 1251
- 1b Teponno RB. Kusari S. Spiteller M. Nat. Prod. Rep. 2016; 33: 1044
- 1c Zhai H. Nakatsukasa M. Mitsumoto Y. Fukuyama Y. Planta Med. 2004; 70: 598
- 1d Zhai H. Inoue T. Moriyama M. Esumi T. Mitsumoto Y. Fukuyama Y. Biol. Pharm. Bull. 2005; 28: 289
- 2a Davin LB. Wang H.-B. Crowell AL. Bedgar DL. Martin DM. Sarkanen S. Lewis NG. Science (Washington, D. C.) 1997; 275: 362
- 2b Lignin and Lignan Biosynthesis, ACS Symposium Series 697 . Lewis NG. Sarkanen S. American Chemical Society; Washington: 1998
- 2c Davin LB. Lewis NG. Phytochem. Rev. 2003; 2: 257
- 2d Dixon RA. Reddy MS. S. Phytochem. Rev. 2003; 2: 289
- 2e Umezawa T. Phytochem. Rev. 2003; 2: 371
- 3a Ramos CS. Linnert HV. de Moraes MM. do Amaral JH. Yamaguchi LF. Kato MJ. RSC Adv. 2017; 7: 46932
- 3b Cui H. Xu B. Wu T. Xu J. Yuan Y. Gu Q. J. Nat. Prod. 2014; 77: 100
- 4a Akiyama K. Yamauchi S. Nakato T. Maruyama M. Sugahara T. Kishida T. Biosci. Biotechnol. Biochem. 2007; 71: 1028
- 4b Yamauchi S. Nakayama K. Nishiwaki H. Shuto Y. Bioorg. Med. Chem. Lett. 2014; 24: 4798
- 4c Wukirsari T. Nishiwaki H. Nishi K. Sugahara T. Akiyama K. Kishida T. Yamauchi S. Biosci. Biotechnol. Biochem. 2016; 80: 669
- 4d See also refs. 24a and 27.
- 5a Ahmed R. Schreiber FG. Stevenson R. Williams JR. Yeo HM. Tetrahedron 1976; 32: 1339
- 5b Stevenson R. Williams JR. Tetrahedron 1977; 33: 285
- 5c Yoda H. Mizutani M. Takabe K. Tetrahedron Lett. 1999; 40: 4701
- 5d Akindele T. Marsden SP. Cumming JG. Org. Lett. 2005; 7: 3685
- 5e Yamauchi S. Okazaki M. Akiyama K. Sugahara T. Kishida T. Kashiwagi T. Org. Biomol. Chem. 2005; 3: 1670
- 5f Jahn U. Rudakov D. Org. Lett. 2006; 8: 4481
- 5g Schatz PF. Ralph J. Lu F. Guzei IA. Bunzel M. Org. Biomol. Chem. 2006; 4: 2801
- 6 Esumi T. Hojyo D. Zhai H. Fukuyama Y. Tetrahedron Lett. 2006; 47: 3979
- 7a Evans DA. Bartroli J. Shih TL. J. Am. Chem. Soc. 1981; 103: 2127
- 7b Evans DA. Nelson JV. Vogel E. Taber TR. J. Am. Chem. Soc. 1981; 103: 3099
- 7c Evans DA. Ennis MD. Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737
- 7d Evans DA. Tedrow JS. Shaw JT. Downey CW. J. Am. Chem. Soc. 2002; 124: 392
- 7e Heravi MM. Zadsirjan V. Tetrahedron: Asymmetry 2013; 24: 1149
- 7f Danda H. Hansen MM. Heathcock CH. J. Org. Chem. 1990; 55: 173
- 7g Walker MA. Heathcock CH. J. Org. Chem. 1991; 56: 5747
- 7h Crimmins MT. King BW. Tabet EA. Chaudhary K. J. Org. Chem. 2001; 66: 894
- 8 Tebbe FN. Parshall GW. Reddy GS. J. Am. Chem. Soc. 1978; 100: 3611
- 9 Kim H. Wooten CM. Park Y. Hong J. Org. Lett. 2007; 9: 3965
- 10a Hanessian S. Reddy GJ. Chahal N. Org. Lett. 2006; 8: 5477
- 10b Aldous DJ. Dalençon AJ. Steel PG. J. Org. Chem. 2003; 68: 9159
- 10c See also ref. 20.
- 11a Bear TJ. Shaw JT. Woerpel KA. J. Org. Chem. 2002; 67: 2056
- 11b Smith DM. Tran MB. Woerpel KA. J. Am. Chem. Soc. 2003; 125: 14149
- 12 Kim H. Kasper AC. Moon EJ. Park Y. Wooten CM. Dewhirst MW. Hong J. Org. Lett. 2009; 11: 89
- 13 Kaoud TS. Park H. Mitra S. Yan C. Tseng C.-C. Shi Y. Jose J. Taliaferro JM. Lee K. Ren P. Hong J. Dalby KN. ACS Chem. Biol. 2012; 7: 1873
- 14 Xue P. Wang L.-P. Jiao X.-Z. Jiang Y.-J. Xiao Q. Luo Z.-G. Xie P. Liang X.-T. J. Asian Nat. Prod. Res. 2009; 11: 281
- 15a Matcha K. Ghosh S. Tetrahedron Lett. 2008; 49: 3433
- 15b Nakato T. Tago R. Akiyama K. Maruyama M. Sugahara T. Kishida T. Yamauchi S. Biosci. Biotechnol. Biochem. 2008; 72: 197
- 15c Nakato T. Yamauchi S. Tago R. Akiyama K. Maruyama M. Sugahara T. Kishida T. Koba Y. Biosci. Biotechnol. Biochem. 2009; 73: 1608
- 16 Matcha K. Ghosh S. Tetrahedron Lett. 2010; 51: 6924
- 17 Hazra S. Hajra S. RSC Adv. 2013; 3: 22834
- 18 Li H. Zhang Y. Xie X. Ma H. Zhao C. Zhao G. She X. Org. Lett. 2014; 16: 4440
- 19 Henrion S. Macé A. Vallejos MM. Roisnel T. Carboni B. Villalgordo JM. Carreaux F. Org. Biomol. Chem. 2018; 16: 1672
- 20 Hanessian S. Reddy GJ. Synlett 2007; 475
- 22 Barker D. Dickson B. Dittrich N. Rye CE. Pure Appl. Chem. 2012; 84: 1557
- 23 Chaimanee S. Pohmakotr M. Kuhakarn C. Reutrakul V. Soorukram D. Org. Biomol. Chem. 2017; 15: 3985
- 24a Harada K. Kubo M. Horiuchi H. Ishii A. Esumi T. Hioki H. Fukuyama Y. J. Org. Chem. 2015; 80: 7076
- 24b Harada K. Kubo N. Tanabe K. Kubo M. Esumi T. Hioki H. Fukuyama Y. Heterocycles 2011; 82: 1127
- 24c Fukuyama Y. Harada K. Esumi T. Hojyo D. Kujime Y. Kubo N. Kubo M. Hioki H. Heterocycles 2008; 76: 551
- 24d Harada K. Horiuchi H. Tanabe K. Carter RG. Esumi T. Kubo M. Hioki H. Fukuyama Y. Tetrahedron Lett. 2011; 52: 3005
- 25 Brown DS. Ley SV. Tetrahedron Lett. 1988; 29: 4869
- 26 Jagtap PR. Císařová I. Jahn U. Org. Biomol. Chem. 2018; 16: 750
- 27 Harada K. Zaha K. Bando R. Irimaziri R. Kubo M. Koriyama Y. Fukuyama Y. Eur. J. Med. Chem. 2018; 148: 86
- 28a Paal C. Chem. Ber. 1884; 17: 2756
- 28b Knorr L. Chem. Ber. 1884; 17: 2863
- 28c Sundberg RJ. In Comprehensive Heterocyclic Chemistry . Vol. 4. Katritzky AR. Rees CW. Pergamon Press; Oxford: 1984: 329-330
- 28d Amarnath V. Anthony DC. Amarnath K. Valentine WM. Wetterau LA. Graham DG. J. Org. Chem. 1991; 56: 6924
- 28e Amarnath V. Amarnath K. J. Org. Chem. 1995; 60: 301
- 28f Portilla Zuniga OM. Sathicq AG. Martinez Zambrano JJ. Romanelli GP. Curr. Org. Synth. 2017; 14: 865
- 28g Khaghaninejad S. Heravi MM. Adv. Heterocycl. Chem. 2014; 111: 95
- 29a Martinet S. Méou A. Brun P. Eur. J. Org. Chem. 2009; 2306
- 29b Nishiwaki H. Nakayama K. Shuto Y. Yamauchi S. J. Agric. Food Chem. 2014; 62: 651
- 30a Sanders SD. Ruiz-Olalla A. Johnson JS. Chem. Commun. 2009; 5135
- 30b Yang G. Shen Y. Li K. Sun Y. Hua Y. J. Org. Chem. 2011; 76: 229
- 31 Shen Y. Yang P.-F. Yang G. Chen W.-L. Chai Z. Org. Biomol. Chem. 2018; 16: 2688
- 32a Krapcho AP. Glynn GA. Grenon BJ. Tetrahedron Lett. 1967; 8: 215
- 32b Krapcho AP. Jahngen EG. E. Jr. Lovey AJ. Short FW. Tetrahedron Lett. 1974; 15: 1091
- 32c Krapcho AP. Weimaster JF. Eldridge JM. Jahngen EG. E. Jr. Lovey AJ. Stephens WP. J. Org. Chem. 1978; 43: 138
- 32d Krapcho AP. Ciganek E. Org. React. 2013; 81: 1
- 33 Takahashi M. Takada K. Matsuura D. Takabe K. Yoda H. Heterocycles 2007; 71: 2113
- 34 Nasveschuk CG. Rovis T. Synlett 2008; 126
- 35a Heck RF. J. Am. Chem. Soc. 1969; 91: 6707
- 35b Dieck HA. Heck RF. J. Am. Chem. Soc. 1974; 96: 1133
- 35c Roy D. Uozumi Y. Adv. Synth. Catal. 2018; 360: 602
- 35d Yang J. Zhao H.-W. He J. Zhang C.-P. Catalysts 2018; 8: 23
- 35e Biffis A. Centomo P. Del Zotto A. Zecca M. Chem. Rev. 2018; 118: 2249
- 35f Christoffel F. Ward TR. Catal. Lett. 2018; 148: 489
- 36 Mondière A. Pousse G. Bouyssi D. Balme G. Eur. J. Org. Chem. 2009; 4225
- 37a Pandey G. Luckorse S. Budakoti A. Puranik VG. Tetrahedron Lett. 2010; 51: 2975
- 37b Nakato T. Yamauchi S. J. Nat. Prod. 2007; 70: 1588
- 38 Albertson AK. F. Lumb J.-P. Angew. Chem. Int. Ed. 2015; 54: 2204
- 39 Pohjoispää M. Wähälä K. Molecules 2013; 18: 13124
- 40 Fu W. Nie M. Wang A. Cao Z. Tang W. Angew. Chem. Int. Ed. 2015; 54: 2520
For selected reviews on biosynthesis of lignans, see:
See, for example:
See, for example:
See, for example:
For a recent review, see:
See also:
See, for example:
See also:
For recent reviews, see:
See also:
See also:
For a recent review, see:
For recent reviews, see:
See, also: