Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(03): 769-779
DOI: 10.1055/s-0037-1610296
DOI: 10.1055/s-0037-1610296
paper
Palladium-Catalyzed Direct Acylation: One-Pot Relay Synthesis of Anthraquinones
We are grateful to the Department of Science and Technology-Science and Engineering Research Board (DST-SERB) [NO.: SB/S1/OC-39/2014], New Delhi, for the financial support. S.B. thanks MHRD for the award of a research fellowship.Further Information
Publication History
Received: 28 August 2018
Accepted after revision: 31 August 2018
Publication Date:
10 October 2018 (online)

Abstract
A bis-acylation strategy to access functionalized anthraquinones via one-pot relay process, is presented. The first acylation was feasible under [Pd]-catalyzed intermolecular direct acylation reaction, while, the second acylation was accomplished by using intramolecular Friedel–Crafts acylation. Notably, benchtop aldehydes have been utilized as non-toxic acylation agents in the key [Pd]-catalyzed acylation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610296.
- Supporting Information
-
References
- 1a Shi YQ. Fukai T. Sakagami H. Kuroda J. Miyaoka R. Tamura M. Yoshida N. Nomura T. Anticancer Res. 2001; 21: 2847
- 1b Gorelik MV. Chemistry of Anthraquinones and Their Derivatives. Khimia; Moscow: 1983
- 2a Thomson RH. Naturally Occurring Quinones III, Recent Advances . 3rd ed. Chapman and Hall; London: 1987
- 2b Thomson RH. Naturally Occurring Quinones . Academic Press; London: 1971. 2nd ed.
- 2c Rizzo S. Wakchaure V. Waldmann H. In Methods and Principles in Medicinal Chemistry: Natural Products in Medicinal Chemistry . Vol. 60. Hanessian S. Wiley-VCH; Weinheim: 2014: 43
- 2d Kongsriprapan S. Kuhakarn C. Deelertpaiboon P. Panthong K. Tuchinda P. Pohmakotr M. Reutrakul V. Pure Appl. Chem. 2012; 84: 1435
- 2e Babula P. Adam V. Havel L. Kizek R. Curr. Pharm. Anal. 2009; 5: 47
- 2f Erb A. Luzhetskyy A. Hardter U. Bechthold A. ChemBioChem 2009; 10: 1392
- 2g Kim MC. Hwang E. Kim T. Ham J. Kim SY. Kwon HC. J. Nat. Prod. 2014; 77: 2326
- 3a Thomson RH. Naturally Occurring Quinones . Butterworths; London: 1957: 309
- 3b Fieser LF. Fieser M. Advanced Organic Chemistry . Reinhold; New York: 1961: 845
- 4a Younos C. Rolland A. Fleurentin J. Lanhers MC. Misslin R. Mortier F. Planta Med. 1990; 56: 430
- 4b Koumaglo K. Gbeassor M. Nikabu O. Souza C. Werner W. Planta Med. 1992; 58: 533
- 5a Lown JW. Pharmacol. Ther. 1993; 60: 185
- 5b Scott LJ. Figgitt DP. CNS Drugs 2004; 18: 379
- 5c Galetta SL. Markowitz C. CNS Drugs 2005; 19: 239
- 5d Monterrey IG. Campiglia P. Carotenuto A. Califano D. Pisano C. Vesci L. Lama T. Bertamino A. Sala M. Bosco AM. Grieco P. Novellino E. J. Med. Chem. 2007; 50: 1787
- 5e Castellano S. Bertamino A. Monterrey IG. Santoriello M. Grieco P. Campiglia P. Sbardella G. Novellino E. Tetrahedron Lett. 2008; 49: 583
- 5f Hsin LW. Wang HP. Kao PH. Lee O. Chen WR. Chen HW. Guh JH. Chan YL. His CP. Yang MS. Li TK. Lee CH. Bioorg. Med. Chem. 2008; 16: 1006
- 5g Weyler S. Baqi Y. Hillmann P. Kaulich M. Hunder AM. Muller IA. Mullera CE. Bioorg. Med. Chem. Lett. 2008; 18: 223
- 5h Crosby IT. Bourke DG. Jones ED. Bruyn PJ. D. Rhodes D. Vandegraaff N. Cox S. Coates JA. V. Robertson AD. Bioorg. Med. Chem. 2010; 18: 6442
- 6a Piattelli M. Nicola MG. D. Phytochemistry 1968; 7: 1183
- 6b Lauk U. Nowack N. US Patent 2005/0150061 A1, 2005
- 7a Aquino AM. Abelt CJ. Berger KL. Darragh CM. Kelley SE. Cossette MV. J. Am. Chem. Soc. 1990; 112: 5819
- 7b Gan H. Whitten DG. J. Am. Chem. Soc. 1993; 115: 8031
- 7c Suzuki A. Hasegawa M. Ishii M. Matsumura S. Toshima K. Bioorg. Med. Chem. Lett. 2005; 15: 4624
- 7d Lerch S. Unkel L.-N. Brasholz M. Angew. Chem. Int. Ed. 2014; 53: 6558
- 7e Petzold D. König B. Adv. Synth. Catal. 2018; 360: 626
- 7f Li B. Fan D. Yang C. Xia W. Org. Biomol. Chem. 2016; 14: 5293
- 7g Cui L. Matusaki Y. Tada N. Miura T. Uno B. Itoh A. Adv. Synth. Catal. 2013; 355: 2203
- 7h Kamijo S. Takao G. Kamijo K. Tsuno T. Ishiguro K. Murafuji T. Org. Lett. 2016; 18: 4912
- 7i Yamaguchi T. Yamaguchi E. Itoh A. Org. Lett. 2017; 19: 1282
- 7j Yamaguchi T. Nobuta T. Tada N. Miura T. Nakayama T. Uno B. Itoh A. Synlett 2014; 1453
- 7k Rusch F. Unkel L.-N. Alpers D. Hoffmann F. Brasholz M. Chem. Eur. J. 2015; 21: 8336
- 7l Yamaguchi T. Kudo Y. Hirashima S.-I. Yamaguchi E. Tada N. Miura T. Itoh A. Tetrahedron Lett. 2015; 56: 1973
- 7m Itoh I. Matsusaki Y. Fujiya A. Tada N. Miura T. Itoh A. Tetrahedron Lett. 2014; 55: 3160
- 7n Kee CW. Chin KF. Wong MW. Tan C-H. Chem. Commun. 2014; 50: 8211
- 7o Tanaka M. Kamito Y. Lei C. Tada N. Itoh A. Tetrahedron Lett. 2015; 56: 5886
- 8a Wang C. Dong H. Hu W. Liu Y. Zhu D. Chem. Rev. 2012; 112: 2208
- 8b Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
- 9a Thomson RH. In The Chemistry of the Quinoid Compounds, Part I & II . Patai S. Wiley; New York: 1974
- 9b Koike T. Tanabe M. Takeuchi N. Tobinaga S. Chem. Pharm. Bull. 1997; 45: 243
- 9c Henry KM. Townsend CA. J. Am. Chem. Soc. 2005; 127: 3300
- 9d Lee TS. Khosla C. Tang Y. J. Am. Chem. Soc. 2005; 127: 12254
- 9e Barluenga J. Martinez S. Suarez-Sobrino AL. Tomas M. Org. Lett. 2008; 10: 677
- 9f Wang ZQ. Zhang WW. Gong LB. Tang RY. Yang XH. Liu Y. Li JH. Angew. Chem. Int. Ed. 2011; 50: 8968
- 9g Nair V. Menon RS. Biju AT. Abhilash KG. Chem. Soc. Rev. 2012; 41: 1050
- 9h Tomas RA. F. Bordado JC. M. Gomes JF. P. Chem. Rev. 2013; 113: 7421
- 9i Bhasin D. Etter JP. Chettiar SN. Mok M. Li PK. Bioorg. Med. Chem. Lett. 2013; 23: 6864
- 9j Punner F. Schieven J. Hilt G. Org. Lett. 2013; 15: 4888
- 9k Krishna MS. B. Likai X. Yong LK. Chem. Commun. 2015; 51: 8592
- 10a Rodriguez D. Castedo L. Dominguez D. Saa C. Org. Lett. 2003; 5: 3119
- 10b Reichwagen J. Hopf H. Guerzo AD. Desvergne JP. Bouas-Laurent H. Org. Lett. 2004; 6: 1899
- 10c Nishina Y. Kida T. Ureshino T. Org. Lett. 2011; 13: 3960
- 11a Li M. Ge H. Org. Lett. 2010; 12: 3464
- 11b Moragas T. Correa CA. Martin R. Chem. Eur. J. 2014; 20: 1
- 11c Neumann KT. Laursen SR. Lindhardt AT. Bang-Andersen B. Skrydstrup T. Org. Lett. 2014; 16: 2216
- 11d Xu T. Alper H. Org. Lett. 2015; 17: 4526
- 11e Xie P. Xie Y. Qian B. Zhou H. Xia C. Huang H. J. Am. Chem. Soc. 2012; 134: 9902
- 11f Cheng WM. Shang R. Yu HZ. Fu Y. Chem. Eur. J. 2015; 21: 1
- 11g Dong K. Fang X. Jackstell R. Laurenczy G. Li Y. Beller M. J. Am. Chem. Soc. 2015; 137: 6053
- 11h Li X. Li X. Jiao N. J. Am. Chem. Soc. 2015; 137: 9246
- 11i Chu L. Lipshultz JM. MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 7929
- 11j Toh QY. McNally A. Vera S. Erdmann N. Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 3772
- 11k Yin Z. Sun P. J. Org. Chem. 2012; 77: 11339
- 11l Tang B. Song R. Wu C. Liu Y. Zhou M. Wei W. Deng G. J. Am. Chem. Soc. 2010; 132: 8900
- 11m Jia X. Zhang S. Wang W. Luo F. Cheng J. Org. Lett. 2009; 11: 3120
- 12a Mahendar L. Krishna J. Reddy AG. K. Ramulu BV. Satyanarayana G. Org. Lett. 2012; 14: 628
- 12b Reddy AG. K. Satyanarayana G. J. Org. Chem. 2016; 81: 12212
- 12c Ramesh K. Satyanarayana G. J. Org. Chem. 2017; 82: 4254
- 12d Suchand B. Satyanarayana G. Eur. J. Org. Chem. 2017; 26: 3886
- 13a Suchand B. Satyanarayana G. J. Org. Chem. 2016; 81: 6409
- 13b Suchand B. Satyanarayana G. J. Org. Chem. 2017; 82: 372
- 13c Suchand B. Satyanarayana G. Eur. J. Org. Chem. 2018; 8: 957
- 13d Suchand B. Satyanarayana G. Eur. J. Org. Chem. 2018; 19: 2233
- 13e Ko S. Kang B. Chang S. Angew. Chem. Int. Ed. 2005; 44: 455
Books:
Reviews: