Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(20): 2697-2700
DOI: 10.1055/s-0037-1610306
DOI: 10.1055/s-0037-1610306
letter
Metal-Free Synthesis of α-Aminophosphonates from Tertiary Amines and P(O)H Compounds via a Cross-Dehydrogenative Coupling Reaction
We acknowledge financial support from the NSFC (21772163, 21778042, 41876072), NFFTBS (J1310024) and the Fundamental Research Funds for the Central Universities (20720160030).Further Information
Publication History
Received: 23 August 2018
Accepted after revision: 21 September 2018
Publication Date:
16 October 2018 (online)
Abstract
The various α-aminophosphonates have been prepared from tertiary aromatic and aliphatic amines with P(O)H compounds via a tert-butyl hydroperoxide mediated cross-dehydrogenative coupling reaction, eliminating the need for transition-metal catalysts. The oxidation of tertiary amine by tert-butyl hydroperoxide generates an iminium cation intermediate. A further addition of P(O)H compound to iminium cation gives the desired product.
Key words
tert-butyl hydroperoxide - α-aminophosphonates - tertiary aromatic amines - tertiary aliphatic amines - dialkyl H-phosphonateSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610306.
- Supporting Information
-
References and Notes
- 1a Mucha A. Kafarski P. Berlicki Ł. J. Med. Chem. 2011; 54: 5955
- 1b Culcasi M. Casano G. Lucchesi C. Mercier A. Clément J.-L. Pique V. Michelet L. Krieger-Liszkay A. Robin M. Pietri S. J. Med. Chem. 2013; 56: 2487
- 1c Vassiliou S. Węglarz-Tomczak E. Berlicki Ł. Pawełczak M. Nocek B. Mulligan R. Joachimiak A. Mucha A. J. Med. Chem. 2014; 57: 8140
- 2a Pudovik AN. Dokl. Akad. Nauk SSSR 1952; 83: 865
- 2b Fields EK. J. Am. Chem. Soc. 1952; 74: 1528
- 2c Kabachnik MI. Medved TYa. Dokl. Akad. Nauk SSSR 1952; 83: 689
- 3a Reddy BR. P. Reddy PV. G. Reddy BN. New J. Chem. 2015; 39: 9605
- 3b Sheykhan M. Mohammadnejad H. Akbari J. Heydari A. Tetrahedron Lett. 2012; 53: 2959
- 3c Kalla RM. N. Bae J. Kim I. New J. Chem. 2017; 41: 6653
- 3d Mirzaei M. Eshghi H. Rahimizadeh M. Bakavoli M. Matin MM. Hosseinymehr M. Rudbari HA. Bruno G. J. Chin. Chem. Soc. 2015; 62: 1087
- 3e Azizi K. Karimi M. Heydari A. Tetrahedron Lett. 2014; 55: 7236
- 3f Kaboudin B. Karami L. Kato J. Aoyama H. Yokomatsu T. Tetrahedron Lett. 2013; 54: 4872
- 4 Mumford PM. Tarver GJ. Shipman M. J. Org. Chem. 2009; 74: 3573
- 5 Gao Y. Huang Z. Zhuang R. Xu J. Zhang P. Tang G. Zhao Y. Org. Lett. 2013; 15: 4214
- 6a Basle O. Li C. Chem. Commun. 2009; 4124
- 6b Rueping M. Zhu S. Koenigs RM. Chem. Commun. 2011; 8679
- 6c Hari DP. König B. Org. Lett. 2011; 13: 3852
- 6d Dhineshkumar J. Samaddar P. Prabhu KR. ACS Omega 2017; 2: 4885
- 6e Liu Y. Wang C. Xue D. Xiao M. Li C. Xiao J. Chem. Eur. J. 2017; 23: 3051
- 6f Zhang Z. Gu K. Bao Z. Xing H. Yang Q. Ren Q. Tetrahedron 2017; 73: 3118
- 6g Gu K. Zhang Z. Bao Z. Xing H. Yang Q. Ren Q. Eur. J. Org. Chem. 2016; 3939
- 6h Ke XS. Ning Y. Tang J. Hu JY. Yin HY. Wang GX. Yang ZS. Jie J. Liu K. Meng ZS. Zhang Z. Su H. Shu C. Zhang JL. Chem. Eur. J. 2016; 22: 9676
- 6i Patil MR. Dedhia NP. Kapdi AR. Kumar AV. J. Org. Chem. 2018; 83: 4477
- 6j Han W. Mayer P. Ofial AR. Adv. Synth. Catal. 2010; 352: 1667
- 6k Han W. Ofial AR. Chem. Commun. 2009; 6023
- 6l Effenberger F. Kottmann H. Tetrahedron 1985; 41: 4171
- 7 Sun H. Su FZ. Ni J. Cao Y. He HY. Fan KN. Angew. Chem. Int. Ed. 2009; 48: 4390
- 8 Shi L. Xia W. Chem. Soc. Rev. 2012; 41: 7687
- 9 Lin B. Shi S. Lin R. Cui Y. Fang M. Tang G. Zhao Y. J. Org. Chem. 2018; 83: 6754
- 10 Garrett CE. Prasad K. Adv. Synth. Catal. 2004; 346: 889
- 11a Zhang P. Ying J. Tang G. Zhao Y. Org. Chem. Front. 2017; 4: 2054
- 11b Gao Y. Lu G. Zhang P. Zhang L. Tang G. Zhao Y. Org. Lett. 2016; 18: 1242
- 11c Chen S. Zhang P. Shu W. Gao Y. Tang G. Zhao Y. Org. Lett. 2016; 18: 5712
- 11d Zhang P. Gao Y. Zhang L. Li Z. Liu Y. Tang G. Zhao Y. Adv. Synth. Catal. 2016; 358: 138
- 12 Ueda H. Yoshida K. Tokuyama H. Org. Lett. 2014; 16: 4194
- 13a Berger O. Montchamp JL. Chem. Rec. 2017; 17: 1203
- 13b Pan X.-Q. Zou J.-P. Yi W.-B. Zhang W. Tetrahedron 2015; 71: 7481
- 13c Xu J. Zhang P. Li X. Gao Y. Wu J. Tang G. Zhao Y. Adv. Synth. Catal. 2014; 356: 3331
- 13d Xu J. Yu X. Song Q. Org. Lett. 2017; 19: 980
- 14 Pacheco JC. O. Lipp A. Nauth AM. Acke F. Dietz J.-P. Opatz T. Chem. Eur. J. 2016; 22: 5409
- 15 Experimental Procedure for the Synthesis of α-Aminophosphonate 3: Tributylamine (1; 1.5 mmol, 3 equiv), diethyl H-phosphonate (2; 0.5 mmol, 1 equiv), TBHP (1 or 2 equiv, 70% in water) and MeCN (2.5 mL) were sequentially placed in a round-bottom flask at room temperature. The reaction mixture was heated at 80 °C with stirring under an argon atmosphere for 24 hours. Upon completion, the reaction mixture was concentrated under vacuum. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (20:1 to 2:1, v/v) as eluent to give the corresponding product 3 (CAS no: 875228-32-3) (ref. 9) as a light-yellow oil (144.5 mg, 90%). 1H NMR (500 MHz, CDCl3): δ = 4.07–3.98 (m, 4 H), 2.89–2.83 (m, 1 H), 2.63–2.49 (m, 4 H), 1.55–1.48 (m, 3 H), 1.33–1.17 (m, 15 H), 0.87–0.80 (m, 9 H). 13C NMR (125 MHz, CDCl3): δ = 61.5 (d, J = 7.4 Hz), 60.8 (d, J = 7.8 Hz), 58.3 (d, J = 134.0 Hz), 51.7 (d, J = 3.5 Hz), 31.7 (s), 29.9 (d, J = 7.2 Hz), 20.4 (d, J = 12.7 Hz), 20.3 (s), 16.6 (d, J = 5.4 Hz), 16.5 (d, J = 5.9 Hz), 14.1 (s), 13.9 (s). 31P NMR (202 MHz, CDCl3): δ = 29.7. HRMS: m/z [M+Na]+ calcd for C16H36NNaO3P+: 344.2325; found: 344.2326.
Selected publications within the last five years:
Pioneering works:
Selected publications. α-Phosphonyl N-aryltetrahydroisoquinolines:
α-Phosphonyl N,N-dialkylanilines: