Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 233-239
DOI: 10.1055/s-0037-1610309
DOI: 10.1055/s-0037-1610309
feature
Silicon Grignard Reagents as Nucleophiles in Transition-Metal-Catalyzed Allylic Substitution
This research was supported by the China Scholarship Council (predoctoral fellowship to W.X., 2015–2019) and the Deutsche Forschungsgemeinschaft (Oe 249/15-1). M.O. is indebted to the Einstein Foundation Berlin for an endowed professorship.Further Information
Publication History
Received: 24 September 2018
Accepted: 28 September 2018
Publication Date:
22 October 2018 (online)
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
A broad range of transition-metal catalysts is shown to promote allylic substitution reactions of allylic electrophiles with silicon Grignard reagents. The procedure was further elaborated for CuI as catalyst. The regioselectively is independent of the leaving group for primary allylic precursors, favoring α over γ. The stereochemical course of this allylic transposition was probed with a cyclic system, and anti-diastereoselectivity was obtained.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610309.
- Supporting Information
-
References
- 1a Denmark SE. Ambrosi A. Org. Process Res. Dev. 2015; 19: 982
- 1b Yus M. González-Gόmez JC. Foubelo F. Chem. Rev. 2013; 113: 5595
- 1c Chabaud L. James P. Landais Y. Eur. J. Org. Chem. 2004; 15: 3173
- 2a Hayashi T. Ohno A. Lu S.-j. Matsumoto Y. Fukuyo E. Yanagi K. J. Am. Chem. Soc. 1994; 116: 4221
- 2b Moser R. Nishikata T. Lipshutz BH. Org. Lett. 2010; 12: 28
- 2c Selander N. Paasch JR. Szabό KJ. J. Am. Chem. Soc. 2011; 133: 409
- 2d Larsson JM. Szabό KJ. J. Am. Chem. Soc. 2013; 135: 443
- 3a Vyas DJ. Oestreich M. Angew. Chem. Int. Ed. 2010; 49: 8513
- 3b Delvos LB. Vyas DJ. Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 4650
- 3c Takeda M. Shintani R. Hayashi T. J. Org. Chem. 2013; 78: 5007
- 3d Hazra CK. Irran E. Oestreich M. Eur. J. Org. Chem. 2013; 4903
- 3e Delvos LB. Hensel A. Oestreich M. Synthesis 2014; 46: 2957
- 3f Delvos LB. Oestreich M. Synthesis 2015; 47: 924
- 4a Oestreich M. Auer G. Adv. Synth. Catal. 2005; 347: 637
- 4b Schmidtmann ES. Oestreich M. Chem. Commun. 2006; 3643
- 4c Vyas DJ. Oestreich M. Chem. Commun. 2010; 46: 568
- 4d Hensel A. Oestreich M. Chem. Eur. J. 2015; 21: 9062
- 5a Lennon PJ. Mack DP. Thompson QE. Organometallics 1989; 8: 1121
- 5b Murakami K. Yorimitsu H. Oshima K. J. Org. Chem. 2009; 74: 1415
- 6a Suginome M. Ohmura T. Miyake Y. Mitani S. Ito Y. Murakami M. J. Am. Chem. Soc. 2003; 125: 11174
- 6b Larsson JM. Zhao TS. Szabό KJ. Org. Lett. 2011; 13: 1888
- 6c Miller ZD. Li W. Belderrain TR. Montgomery J. J. Am. Chem. Soc. 2013; 135: 15282
- 6d MeAtee JR. Yap GP. A. Watson DA. J. Am. Chem. Soc. 2014; 136: 10166
- 6e Nakai S. Matsui M. Shimizu Y. Adachi Y. Obora Y. J. Org. Chem. 2015; 80: 7317
- 7 Xue W. Shishido R. Oestreich M. Angew. Chem. Int. Ed. 2018; 57: 12141
- 8 George MV. Peterson DJ. Gilman H. J. Am. Chem. Soc. 1960; 82: 403
- 9 Fleming I. Higgins D. Lawrence NJ. Thomas AP. J. Chem. Soc., Perkin Trans. 1 1992; 3331
- 10 For the preparation of syn-16a, see: Watson ID. G. Yudin AK. J. Am. Chem. Soc. 2005; 127: 17516
- 11 Fleming I. Thomas AP. J. Chem. Soc., Chem. Commun. 1986; 1456
- 12 Tamao K. Kawachi A. Ito K. J. Am. Chem. Soc. 1992; 82: 3989
- 13a Xu L.-W. Angew. Chem. Int. Ed. 2012; 51: 12932
- 13b Cui Y.-M. Lin Y. Xu L.-W. Coord. Chem. Rev. 2017; 330: 37
- 13c Shintani R. Synlett 2018; 29: 388
- 14 Yasui K. Fugami K. Tanaka S. Tamaru Y. J. Org. Chem. 1995; 60: 1365
- 15 Harris RK. Becker ED. Cabral de Menezes R. Goodfellow SM. Granger P. Pure Appl. Chem. 2001; 73: 1795
- 16 Kofron WG. Baclawski LM. J. Org. Chem. 1976; 41: 1879
- 17 Krasovskiy A. Knochel P. Synthesis 2006; 890
- 18 Fleming I. Rowley M. Cuadrado P. González-Nogal AM. Pulido FJ. Tetrahedron 1989; 45: 413
- 19 Li Z. Yang C. Zheng H. Qiu H. Lai G. J. Organomet. Chem. 2008; 693: 3771
- 20 Barbero A. Cuadrado P. Gonzalez AM. Pulido FJ. Fleming I. J. Chem. Soc., Perkin Trans. 1 1991; 2811
- 21 Jorapur YR. Shimada T. Synlett 2012; 23: 1633
For recent reviews, see:
For selected examples with Si–Si compounds, see:
For selected examples with Si–B compounds, see:
For selected examples with silicon zinc reagents, see:
For nucleophilic substitution of silicon electrophiles with allylic metal reagents, see:
Other methods hinge on the silylation of 1,3-dienes or allenes or, more recently, involve formal C–H bond silylation:
For recent reviews on the synthesis of silicon-stereogenic silanes, see: