Subscribe to RSS
DOI: 10.1055/s-0037-1610320
The Hantzsch Pyrrole Synthesis: Non-conventional Variations and Applications of a Neglected Classical Reaction
Financial support of our research from MINECO (grant CTQ2015-68380-R) and CAM (B2017/BMD-3813) is gratefully acknowledged.Publication History
Received: 10 September 2018
Accepted after revision: 18 October 2018
Publication Date:
03 December 2018 (online)
Abstract
Pyrrole is one of the most important one-ring heterocycles because of its widespread presence in natural products and unnatural bioactive compounds and drugs in clinical use. The preparation of pyrroles by reaction between primary amines, β-dicarbonyl compounds, and α-halo ketones, known as the Hantzsch pyrrole synthesis, is reviewed here for the first time. In spite of its age and its named reaction status, this method has received little attention in the literature. Recent work involving the use of non-conventional conditions has rejuvenated this classical reaction and this is emphasized in this review. Some applications of the Hantzsch reaction in target-oriented synthesis are also discussed.
1 Introduction
2 The Conventional Hantzsch Pyrrole Synthesis
3 Hantzsch Pyrrole Synthesis under Non-conventional Conditions
4 Applications of the Hantzsch Pyrrole Synthesis
5 Conclusions
-
References
- 1a Dembitsky VM, Gloriozova TA, Poroikov VV. Mini-Rev. Med. Chem. 2005; 5: 319
- 1b Gupton JT. Top. Heterocycl. Chem. 2006; 2: 53
- 2a Fürstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
- 2b Bailly C. Curr. Med. Chem.: Anti-Cancer Agents 2004; 4: 363
- 2c Fan H, Peng J, Hamann MT, Hu JF. Chem. Rev. 2008; 108: 264
- 2d Forte B, Malgesini B, Piutti C, Quartieri F, Scolaro A, Papeo G. Mar. Drugs 2009; 7: 705
- 2e Al-Mourabit A, Zancanella MA, Tilvi S, Romo D. Nat. Prod. Rep. 2011; 28: 1229
- 3 For the biosynthesis of pyrrole natural products, see: Walsh CT, Garneau-Tsodikova S, Howard-Jones AR. Nat. Prod. Rep. 2006; 23: 517
- 4a Hughes CC, Prieto-Davo A, Jensen PR, Fenical W. Org. Lett. 2008; 10: 629
- 4b Li R. Med. Res. Rev. 2016; 36: 169
- 5a Biava M, Porretta GC, Manetti V. Mini-Rev. Med. Chem. 2007; 7: 65
- 5b Biava M, Porretta GC, Poce G, Supino S, Sleiter G. Curr. Org. Chem. 2009; 13: 1092
- 5c Biava M, Porretta GC, Poce G, Battilocchio C, Alfonso S, de Logu A, Manetti F, Botta M. ChemMedChem 2011; 4: 593
- 6 Kunfermann A, Witschel M, Illarionov B, Martin R, Rottmann M, Höffken HW, Seet M, Eisenreich W, Knölker H.-J, Fischer M, Bacher A, Groll M, Diederich F. Angew. Chem. Int. Ed. 2014; 53: 1
- 7 Teixeira C, Barbault F, Rebehmed J, Liu K, Xie L, Lu H, Jiang S, Fan B, Maurel F. Bioorg. Med. Chem. 2008; 16: 3039
- 8 Chin YW, Lim SW, Kim S.-H, Shin D.-Y, Suh Y.-G, Kim Y.-B, Kim YC, Kim J. Bioorg. Med. Chem. Lett. 2003; 13: 79
- 9 For a review of the discovery and development of atorvastatin, see: Roth BD. Prog. Med. Chem. 2002; 40: 1
- 10a Higgins SJ. Chem. Soc. Rev. 1997; 26: 247
- 10b Maeda H. Eur. J. Org. Chem. 2007; 5313
- 10c Loudet A, Burgess K. Chem. Rev. 2007; 107: 4981
- 10d Berlin A, Vercelli B, Zotti G. Polym. Rev. 2008; 48: 493
- 11a Donohe TJ, Thomas RE. Chem. Rec. 2007; 7: 180
- 11b Mal D, Shome B, Dinda BK. In Heterocycles in Natural Product Synthesis . Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011. Chap. 6
- 12a Black DST. C. Science of Synthesis 2001; 9: 444
- 12b Ferreira VF, de Souza MC. B. V, Cunha AC, Pereira LO. R, Ferreira ML. G. Org. Prep. Proced. Int. 2001; 33: 411
- 12c Joshi SD, More UA, Kulkarni VH, Aminabhavi TM. Curr. Org. Chem. 2013; 17: 2279
- 12d Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
- 12e Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
- 12f Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084 ; see also references 29 and 30
- 13 Hantzsch A. Ber. Dtsch. Chem. Ges. 1890; 23: 1474
- 14 Roomi MW, MacDonald SF. Can. J. Chem. 1970; 48: 1689
- 15a Kameswaran V, Jiang B. Synthesis 1997; 530
- 15b Biev AT, Nankov AN, Prodanova PP. Dokl. Bulg. Akad. Nauk. 2000; 53: 29
- 15c Matiychuk VS, Martyak RL, Obushak ND, Ostapiuk YV, Pidlypnyi NI. Chem. Heterocycl. Compd. 2004; 40: 1218
- 16 Calvo L, González-Ortega A, Sañudo MC. Synthesis 2002; 2450
- 17 Reddy GR, Reddy TR, Joseph SC, Reddy KS, Meda CL. T, Kandale A, Rambabu D, Krishna GR, Reddy CM, Parsa KV. L, Kumar KS, Pal M. RSC Adv. 2012; 2: 9142
- 18 Meshram HM, Bangade VM, Reddy BC, Kumar GS, Thakur PB. Int. J. Org. Chem. 2012; 2: 159 ; https://www.scirp.org/journal/ijoc/
- 19 Abdel-Mohsen SA, El-Ossaily YA. Heterocycl. Commun. 2015; 21: 207
- 20 Abdel-Mohsen SA, El-Emary T. ARKIVOC 2016; (iv): 184
- 21 Murthy SN, Madhav B, Kumar AV, Rao KR, Nageswar YV. D. Helv. Chim. Acta 2009; 92: 2118
- 22 Pal G, Paul S, Das AR. Synthesis 2013; 45: 1191
- 23 Kan W, Jing T, Zhang X.-H, Zheng Y.-J, Chen L, Zhao B. Heterocycles 2015; 91: 2367
- 24 Yavari I, Ghazvini M, Azad L, Sanaeishoar T. Chin. Chem. Lett. 2011; 22: 1219
- 25 Trautwein AW, Süssmuth RD, Jung G. Bioorg. Med. Chem. Lett. 1998; 8: 2381
- 26 Shahvelayati AS, Sabbaghan M, Banihashem S. Monatsh. Chem. 2017; 148: 1123
- 27 Herath A, Cosford ND. P. Org. Lett. 2010; 12: 5182
- 28 Lei T, Liu W.-Q, Li J, Huang M.-Y, Yang B, Meng QY, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2016; 18: 2479
- 29 Sridharan V, Menéndez JC. Chem. Rev. 2010; 110: 3805
- 30 Estévez V, Villacampa M, Menéndez JC. Chem. Commun. 2013; 49: 591
- 31 Estévez V, Sridharan V, Sabaté S, Villacampa M, Menéndez JC. Asian J. Org. Chem. 2016; 5: 652
- 32 Leonardi M, Villacampa M, Menéndez JC. Beilstein J. Org. Chem. 2017; 13: 1957
- 33 Qi H, Wen J, Li L, Bai R, Chen L, Wang D. J. Heterocycl. Chem. 2015; 52: 1565
- 34 Gangjee A, Zeng Y, McGuire JJ, Mehraein F, Kisliuk RL. J. Med. Chem. 2004; 47: 6893
- 35 Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A. J. Med. Chem. 2008; 51: 5052
- 36 Carson JR, Wong S. J. Med. Chem. 1973; 16: 172
- 37 Skaddan MB. J. Labelled Compd. Radiopharm. 2010; 53: 73
- 38a Jie-Jack L, Douglas SJ, Drago RS, Bruce DR. Contemporary Drug Synthesis . Chap. 9, Wiley-Interscience; Hoboken: 2004
- 38b Casar Z. Curr. Org. Chem. 2010; 14: 816
- 38c Harrington PJ. Pharmaceutical Process Chemistry for Synthesis: Rethinking the Routes to Scale-up. Wiley; Hoboken: 2011. Chap. 9,
- 39 Estévez V, Villacampa M, Menéndez JC. Org. Chem. Front. 2014; 1: 458
- 40 Nielsen TE, Schreiber SL. Angew. Chem. Int. Ed. 2008; 47: 48
- 41 Leonardi M, Villacampa M, Menéndez JC. J. Org. Chem. 2017; 82: 2570
For general reviews of antitumor natural pyrrole derivatives, see:
For reviews of specific families of pyrrole alkaloids, see:
For selected reviews of the role of pyrrole derivatives in materials science, see:
For reviews of the use of pyrroles as synthetic building blocks, see:
For reviews of the synthesis of pyrroles, see:
For representative examples, see: