Synthesis 2019; 51(04): 816-828
DOI: 10.1055/s-0037-1610320
short review
© Georg Thieme Verlag Stuttgart · New York

The Hantzsch Pyrrole Synthesis: Non-conventional Variations and Applications of a Neglected Classical Reaction

Marco Leonardi
,
Verónica Estévez
,
Mercedes Villacampa
,
Financial support of our research from MINECO (grant CTQ2015-68380-R) and CAM (B2017/BMD-3813) is gratefully acknowledged.
Weitere Informationen

Publikationsverlauf

Received: 10. September 2018

Accepted after revision: 18. Oktober 2018

Publikationsdatum:
03. Dezember 2018 (online)


Abstract

Pyrrole is one of the most important one-ring heterocycles because of its widespread presence in natural products and unnatural bioactive compounds and drugs in clinical use. The preparation of pyrroles by reaction between primary amines, β-dicarbonyl compounds, and α-halo ketones, known as the Hantzsch pyrrole synthesis, is reviewed here for the first time. In spite of its age and its named reaction status, this method has received little attention in the literature. Recent work involving the use of non-conventional conditions has rejuvenated this classical reaction and this is emphasized in this review. Some applications of the Hantzsch reaction in target-oriented synthesis are also discussed.

1 Introduction

2 The Conventional Hantzsch Pyrrole Synthesis

3 Hantzsch Pyrrole Synthesis under Non-conventional Conditions

4 Applications of the Hantzsch Pyrrole Synthesis

5 Conclusions

 
  • References


    • For general reviews of antitumor natural pyrrole derivatives, see:
    • 1a Dembitsky VM, Gloriozova TA, Poroikov VV. Mini-Rev. Med. Chem. 2005; 5: 319
    • 1b Gupton JT. Top. Heterocycl. Chem. 2006; 2: 53

      For reviews of specific families of pyrrole alkaloids, see:
    • 2a Fürstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
    • 2b Bailly C. Curr. Med. Chem.: Anti-Cancer Agents 2004; 4: 363
    • 2c Fan H, Peng J, Hamann MT, Hu JF. Chem. Rev. 2008; 108: 264
    • 2d Forte B, Malgesini B, Piutti C, Quartieri F, Scolaro A, Papeo G. Mar. Drugs 2009; 7: 705
    • 2e Al-Mourabit A, Zancanella MA, Tilvi S, Romo D. Nat. Prod. Rep. 2011; 28: 1229
  • 3 For the biosynthesis of pyrrole natural products, see: Walsh CT, Garneau-Tsodikova S, Howard-Jones AR. Nat. Prod. Rep. 2006; 23: 517
    • 5a Biava M, Porretta GC, Manetti V. Mini-Rev. Med. Chem. 2007; 7: 65
    • 5b Biava M, Porretta GC, Poce G, Supino S, Sleiter G. Curr. Org. Chem. 2009; 13: 1092
    • 5c Biava M, Porretta GC, Poce G, Battilocchio C, Alfonso S, de Logu A, Manetti F, Botta M. ChemMedChem 2011; 4: 593
  • 6 Kunfermann A, Witschel M, Illarionov B, Martin R, Rottmann M, Höffken HW, Seet M, Eisenreich W, Knölker H.-J, Fischer M, Bacher A, Groll M, Diederich F. Angew. Chem. Int. Ed. 2014; 53: 1
  • 7 Teixeira C, Barbault F, Rebehmed J, Liu K, Xie L, Lu H, Jiang S, Fan B, Maurel F. Bioorg. Med. Chem. 2008; 16: 3039
  • 8 Chin YW, Lim SW, Kim S.-H, Shin D.-Y, Suh Y.-G, Kim Y.-B, Kim YC, Kim J. Bioorg. Med. Chem. Lett. 2003; 13: 79
  • 9 For a review of the discovery and development of atorvastatin, see: Roth BD. Prog. Med. Chem. 2002; 40: 1

    • For selected reviews of the role of pyrrole derivatives in materials science, see:
    • 10a Higgins SJ. Chem. Soc. Rev. 1997; 26: 247
    • 10b Maeda H. Eur. J. Org. Chem. 2007; 5313
    • 10c Loudet A, Burgess K. Chem. Rev. 2007; 107: 4981
    • 10d Berlin A, Vercelli B, Zotti G. Polym. Rev. 2008; 48: 493

      For reviews of the use of pyrroles as synthetic building blocks, see:
    • 11a Donohe TJ, Thomas RE. Chem. Rec. 2007; 7: 180
    • 11b Mal D, Shome B, Dinda BK. In Heterocycles in Natural Product Synthesis . Majumdar KC, Chattopadhyay SK. Wiley-VCH; Weinheim: 2011. Chap. 6

      For reviews of the synthesis of pyrroles, see:
    • 12a Black DST. C. Science of Synthesis 2001; 9: 444
    • 12b Ferreira VF, de Souza MC. B. V, Cunha AC, Pereira LO. R, Ferreira ML. G. Org. Prep. Proced. Int. 2001; 33: 411
    • 12c Joshi SD, More UA, Kulkarni VH, Aminabhavi TM. Curr. Org. Chem. 2013; 17: 2279
    • 12d Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2010; 39: 4402
    • 12e Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
    • 12f Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084 ; see also references 29 and 30
  • 13 Hantzsch A. Ber. Dtsch. Chem. Ges. 1890; 23: 1474
  • 14 Roomi MW, MacDonald SF. Can. J. Chem. 1970; 48: 1689

    • For representative examples, see:
    • 15a Kameswaran V, Jiang B. Synthesis 1997; 530
    • 15b Biev AT, Nankov AN, Prodanova PP. Dokl. Bulg. Akad. Nauk. 2000; 53: 29
    • 15c Matiychuk VS, Martyak RL, Obushak ND, Ostapiuk YV, Pidlypnyi NI. Chem. Heterocycl. Compd. 2004; 40: 1218
  • 16 Calvo L, González-Ortega A, Sañudo MC. Synthesis 2002; 2450
  • 17 Reddy GR, Reddy TR, Joseph SC, Reddy KS, Meda CL. T, Kandale A, Rambabu D, Krishna GR, Reddy CM, Parsa KV. L, Kumar KS, Pal M. RSC Adv. 2012; 2: 9142
  • 18 Meshram HM, Bangade VM, Reddy BC, Kumar GS, Thakur PB. Int. J. Org. Chem. 2012; 2: 159 ; https://www.scirp.org/journal/ijoc/
  • 19 Abdel-Mohsen SA, El-Ossaily YA. Heterocycl. Commun. 2015; 21: 207
  • 20 Abdel-Mohsen SA, El-Emary T. ARKIVOC 2016; (iv): 184
  • 21 Murthy SN, Madhav B, Kumar AV, Rao KR, Nageswar YV. D. Helv. Chim. Acta 2009; 92: 2118
  • 22 Pal G, Paul S, Das AR. Synthesis 2013; 45: 1191
  • 23 Kan W, Jing T, Zhang X.-H, Zheng Y.-J, Chen L, Zhao B. Heterocycles 2015; 91: 2367
  • 24 Yavari I, Ghazvini M, Azad L, Sanaeishoar T. Chin. Chem. Lett. 2011; 22: 1219
  • 25 Trautwein AW, Süssmuth RD, Jung G. Bioorg. Med. Chem. Lett. 1998; 8: 2381
  • 26 Shahvelayati AS, Sabbaghan M, Banihashem S. Monatsh. Chem. 2017; 148: 1123
  • 27 Herath A, Cosford ND. P. Org. Lett. 2010; 12: 5182
  • 28 Lei T, Liu W.-Q, Li J, Huang M.-Y, Yang B, Meng QY, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2016; 18: 2479
  • 29 Sridharan V, Menéndez JC. Chem. Rev. 2010; 110: 3805
  • 30 Estévez V, Villacampa M, Menéndez JC. Chem. Commun. 2013; 49: 591
  • 31 Estévez V, Sridharan V, Sabaté S, Villacampa M, Menéndez JC. Asian J. Org. Chem. 2016; 5: 652
  • 32 Leonardi M, Villacampa M, Menéndez JC. Beilstein J. Org. Chem. 2017; 13: 1957
  • 33 Qi H, Wen J, Li L, Bai R, Chen L, Wang D. J. Heterocycl. Chem. 2015; 52: 1565
  • 34 Gangjee A, Zeng Y, McGuire JJ, Mehraein F, Kisliuk RL. J. Med. Chem. 2004; 47: 6893
  • 35 Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A. J. Med. Chem. 2008; 51: 5052
  • 36 Carson JR, Wong S. J. Med. Chem. 1973; 16: 172
  • 37 Skaddan MB. J. Labelled Compd. Radiopharm. 2010; 53: 73
    • 38a Jie-Jack L, Douglas SJ, Drago RS, Bruce DR. Contemporary Drug Synthesis . Chap. 9, Wiley-Interscience; Hoboken: 2004
    • 38b Casar Z. Curr. Org. Chem. 2010; 14: 816
    • 38c Harrington PJ. Pharmaceutical Process Chemistry for Synthesis: Rethinking the Routes to Scale-up. Wiley; Hoboken: 2011. Chap. 9,
  • 39 Estévez V, Villacampa M, Menéndez JC. Org. Chem. Front. 2014; 1: 458
  • 40 Nielsen TE, Schreiber SL. Angew. Chem. Int. Ed. 2008; 47: 48
  • 41 Leonardi M, Villacampa M, Menéndez JC. J. Org. Chem. 2017; 82: 2570