Subscribe to RSS
DOI: 10.1055/s-0037-1610368
Guided by Evolution: Biology-Oriented Synthesis of Bioactive Compound Classes
Publication History
Received: 29 August 2018
Accepted: 03 September 2018
Publication Date:
11 October 2018 (online)
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
Biology-oriented-synthesis (BIOS), is a chemocentric approach to identifying structurally novel molecules as tools for chemical biology and medicinal chemistry research. The vast chemical space cannot be exhaustively covered by synthetic chemistry. Thus, methods which reveal biologically relevant portions of chemical space are of high value. Guided by structural conservation in the evolution of both proteins and natural products, BIOS classifies bioactive compound classes in a hierarchical manner based on molecular architecture and bioactivity. Biologically relevant scaffolds inspire and guide the synthesis of BIOS libraries, which calls for the development of suitable synthetic methodologies. These compound collections have enriched biological relevance, leading to the discovery of bioactive small molecules. These potent and selective modulators allow the study of complex biological pathways and may serve as starting points for drug discovery programs. Thus, BIOS can also be regarded as a hypothesis-generating tool, guiding the design and preparation of novel, bioactive molecular scaffolds. This review elaborates the principles of BIOS and highlights selected examples of their application, which have in turn created future opportunities for the expansion of BIOS and its combination with fragment-based compound discovery for the identification of biologically relevant small molecules with unprecedented molecular scaffolds.
1 Introduction
2 Structural Classification of Natural Products
3 Implications and Opportunities for Biology-Oriented Synthesis
4 Applications of Biology-Oriented Synthesis
4.1 Chemical Structure and Bioactivity Guided Approaches
4.2 Natural-Product-Derived Fragment-Based Approaches
5 Conclusions and Outlook
-
References
- 1 Zamir E. Bastiaens PI. H. Nat. Chem. Biol. 2008; 4: 643
- 2 Dobson CM. Nature 2004; 432: 824
- 3 Gao M. Skolnick J. PLoS Comput. Biol. 2013; 9: e1003302
- 4 Patel SC. Bradley LH. Jinadasa SP. Hecht MH. Protein Sci. 2009; 18: 1388
- 5 Sadreyev RI. Grishin NV. BMC Struct. Biol. 2006; 6: 6
- 6 Newman DJ. Cragg GM. J. Nat. Prod. 2007; 70: 461
- 7 Lovering F. Bikker J. Humblet C. J. Med. Chem. 2009; 52: 6752
- 8 Ziegler S. Pries V. Hedberg C. Waldmann H. Angew. Chem. Int. Ed. 2013; 52: 2744
- 9 Koch MA. Schuffenhauer A. Scheck M. Wetzel S. Casaulta M. Odermatt A. Ertl P. Waldmann H. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 17272
- 10 Murray CW. Rees DC. Nat. Chem. 2009; 1: 187
- 11 Renner S. van Otterlo WA. L. Dominguez Seoane M. Mocklinghoff S. Hofmann B. Wetzel S. Schuffenhauer A. Ertl P. Oprea TI. Steinhilber D. Brunsveld L. Rauh D. Waldmann H. Nat. Chem. Biol. 2009; 5: 585
- 12 Frye SV. Nat. Chem. Biol. 2010; 6: 159
- 13 Dückert H. Pries V. Khedkar V. Menninger S. Bruss H. Bird AW. Maliga Z. Brockmeyer A. Janning P. Hyman A. Grimme S. Schürmann M. Preut H. Hübel K. Ziegler S. Kumar K. Waldmann H. Nat. Chem. Biol. 2012; 8: 179
- 14 Ishikura M. Yamada K. Abe T. Nat. Prod. Rep. 2010; 27: 1630
- 15 Hung DT. Jamison TF. Schreiber SL. Chem. Biol. 1996; 3: 623
- 16 Peterson JR. Mitchison TJ. Chem. Biol. 2002; 9: 1275
- 17 Lim MJ. Wang XW. Cancer Detect. Prev. 2006; 30: 481
- 18 Hutten S. Kehlenbach RH. Trends Cell Biol. 2007; 17: 193
- 19 Eschenbrenner-Lux V. Küchler P. Ziegler S. Kumar K. Waldmann H. Angew. Chem. Int. Ed. 2014; 53: 2134
- 20 Enders D. Grondal C. Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
- 21 Nielsen TE. Schreiber SL. Angew. Chem. Int. Ed. 2008; 47: 48
- 22 Liu W. Khedkar V. Baskar B. Schürmann M. Kumar K. Angew. Chem. Int. Ed. 2011; 50: 6900
- 23 Butler MS. Nat. Prod. Rep. 2008; 25: 475
- 24 Prisinzano TE. J. Nat. Prod. 2009; 72: 581
- 25 Jessen HJ. Schumacher A. Shaw T. Pfaltz A. Gademann K. Angew. Chem. Int. Ed. 2011; 50: 4222
- 26 Kuai L. Wang X. Madison JM. Schreiber SL. Scolnick EM. Haggarty SJ. ACS Chem. Neurosci. 2010; 1: 325
- 27 Bauer AJ. Stockwell BR. Chem. Rev. 2008; 108: 1774
- 28 Dakas P.-Y. Parga JA. Höing S. Schöler HR. Sterneckert J. Kumar K. Waldmann H. Angew. Chem. Int. Ed. 2013; 52: 9576
- 29 Praveen Kumar V. Gajendra Reddy R. Vo DD. Chakravarty S. Chandrasekhar S. Grée R. Bioorg. Med. Chem. Lett. 2012; 22: 1439
- 30 Cheng X. Harzdorf N. Khaing Z. Kang D. Camelio AM. Shaw T. Schmidt CE. Siegel D. Org. Biomol. Chem. 2012; 10: 383
- 31 Rawat M. Gama CI. Matson JB. Hsieh-Wilson LC. J. Am. Chem. Soc. 2008; 130: 2959
- 32 Antonchick AP. López-Tosco S. Parga J. Sievers S. Schürmann M. Preut H. Höing S. Schöler HR. Sterneckert J. Rauh D. Waldmann H. Chem. Biol. 2013; 20: 500
- 33 Chessari G. Woodhead AJ. Drug Discov. Today 2009; 14: 668
- 34 Roughley SD. Hubbard RE. J. Med. Chem. 2011; 54: 3989
- 35 Siegel MG. Vieth M. Drug Discov. Today 2007; 12: 71
- 36 Babaoglu K. Shoichet BK. Nat. Chem. Biol. 2006; 2: 720
- 37 Hung AW. Ramek A. Wang Y. Kaya T. Wilson JA. Clemons PA. Young DW. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 6799
- 38 Grabowski K. Baringhaus K.-H. Schneider G. Nat. Prod. Rep. 2008; 25: 892
- 39 Congreve M. Carr R. Murray C. Jhoti H. Drug Discov. Today 2003; 8: 876
- 40 Köster H. Craan T. Brass S. Herhaus C. Zentgraf M. Neumann L. Heine A. Klebe G. J. Med. Chem. 2011; 54: 7784
- 41 Over B. Wetzel S. Grütter C. Nakai Y. Renner S. Rauh D. Waldmann H. Nat. Chem. 2013; 5: 21
- 42 Furstner A. Chem. Soc. Rev. 2009; 38: 3208
- 43 Blunt JW. Copp BR. Munro MH. G. Northcote PT. Prinsep MR. Nat. Prod. Rep. 2005; 22: 15
- 44 Galliford CV. Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 45 Ding K. Lu Y. Nikolovska-Coleska Z. Wang G. Qiu S. Shangary S. Gao W. Qin D. Stuckey J. Krajewski K. Roller PP. Wang S. J. Med. Chem. 2006; 49: 3432
- 46 Pérez-Galán P. Martin NJ. A. Campaña AG. Cárdenas DJ. Echavarren AM. Chem. Asian J. 2011; 6: 482
- 47 López-Carrillo V. Huguet N. Mosquera Á. Echavarren AM. Chem. Eur. J. 2011; 17: 10972
- 48 Briscoe J. Therond PP. Nat. Rev. Mol. Cell Biol. 2013; 14: 416
- 49 Anastas JN. Moon RT. Nat. Rev. Cancer 2013; 13: 11
- 50 Choi KS. Exp. Mol. Med. 2012; 44: 109
- 51 Jia ZJ. Shan G. Daniliuc CG. Antonchick AP. Waldmann H. Angew. Chem. Int. Ed. 2018; 1
- 52 Edgar JA. Molyneux RJ. Colegate SM. Chem. Res. Toxicol. 2015; 28: 4
- 53 Robertson J. Stevens K. Nat. Prod. Rep. 2014; 31: 1721
- 54 Xu H. Golz C. Strohmann C. Antonchick AP. Waldmann H. Angew. Chem. Int. Ed. 2016; 55: 7761 ; Angew. Chem. 2016, 128, 7892
- 55 Singh S. Chem. Rev. 2000; 100: 925
- 56 Carroll FI. Runyon SP. Abraham P. Navarro H. Kuhar MJ. Pollard GT. Howard JL. J. Med. Chem. 2004; 47: 6401
- 57 Grynkiewicz G. Gadzikowska M. Pharmacol. Rep. 2008; 60: 439
- 58 Cheenpracha S. Ritthiwigrom T. Laphookhieo S. J. Nat. Prod. 2013; 76: 723
- 59 O’Hagan D. Nat. Prod. Rep. 1997; 14: 637
- 60 O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
- 61 Jia ZJ. Takayama H. Futamura Y. Aono H. Bauer JO. Strohmann C. Antonchick AP. Osada H. Waldmann H. J. Org. Chem. 2018; 83: 7033
- 62 Zaima K. Koga I. Iwasawa N. Hosoya T. Hirasawa Y. Kaneda T. Ismail IS. Lajis NH. Morita H. J. Nat. Med. 2013; 67: 9
- 63 Rafferty RJ. Hicklin RW. Maloof KA. Hergenrother PJ. Angew. Chem. Int. Ed. 2014; 53: 220
- 64 Garcia-Castro M. Zimmermann S. Sankar MG. Kumar K. Angew. Chem. Int. Ed. 2016; 55: 7586
- 65 Morrison KC. Hergenrother PJ. Nat. Prod. Rep. 2014; 31: 6
- 66 Huigens RW. Morrison KC. Hicklin RW. Flood TA. Richter MF. Hergenrother PJ. Nat. Chem. 2013; 5: 195
- 67 Amirkia V. Heinrich M. Phytochem. Lett. 2014; 10: xlviii
- 68 Laraia L. Ohsawa K. Konstantinidis G. Robke L. Wu Y.-W. Kumar K. Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2145