Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 276-284
DOI: 10.1055/s-0037-1610373
DOI: 10.1055/s-0037-1610373
paper
Enantioselective Electrochemical Lactonization Using Chiral Iodoarenes as Mediators
This work was supported by the China Scholarship Council (No. 201608140185). Support from Cardiff University and Taiyuan University of Technology is gratefully acknowledged.Further Information
Publication History
Received: 07 September 2018
Accepted after revision: 04 October 2018
Publication Date:
25 October 2018 (online)
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
The enantioselective electrochemical lactonization of diketo acid derivatives using chiral iodoarenes as redox mediators is reported for the first time. Good to high stereoselectivities are observed in the lactonization and also in intermolecular α-alkoxylations of diketo ester derivatives. This enantioselective process was then adapted to an electrochemical flow microreactor where only small amounts of supporting electrolyte were necessary.
Key words
electrolysis - flow microreactors - hypervalent iodine - lactonization - stereoselective synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610373.
- Supporting Information
-
References
- 1 Current address: College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Yingze West Street 79, Taiyuan 030024, P. R. of China.
- 2a Flores A, Cots E, Bergès J, Muñiz K. Adv. Synth. Catal. 2018; DOI: in press; 10.1002/adsc.201800521.
- 2b Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 2c Wirth T. Hypervalent Iodine Chemistry . Berlin; Springer-Verlag: 2016
- 2d Companys S, Peixoto PA, Bosset C, Chassaing S, Miqueu K, Sotiropoulos JM, Pouységu L, Quideau S. Chem. Eur. J. 2017; 23: 13309
- 2e Shimogaki M, Fujita M, Sugimura T. Angew. Chem. Int. Ed. 2016; 55: 15797
- 2f Kong W, Feige P, Haro T, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 2469
- 3a Fujita M. Tetrahedron Lett. 2017; 58: 4409
- 3b Woerly EM, Banik SM, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13858
- 3c Muñiz K, Barreiro L, Romero RM, Martínez C. J. Am. Chem. Soc. 2017; 139: 4354
- 3d Suzuki S, Kamo T, Fukushi K, Hiramatsu T, Tokunaga E, Dohi T, Kita Y, Shibata N. Chem. Sci. 2014; 5: 2754
- 3e Haubenreisser S, Wöste TH, Martínez C, Ishihara K, Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 413
- 3f Gelis C, Dumoulin A, Bekkaye M, Neuville L, Masson G. Org. Lett. 2017; 19: 278
- 4a Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
- 4b Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
- 4c Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 9215
- 4d Uyanik M, Sasakura N, Mizuno M, Ishihara K. ACS Catal. 2017; 7: 872
- 4e Dohi T, Sasa H, Miyazaki K, Fujitake M, Takenaga N, Kita Y. J. Org. Chem. 2017; 82: 11954
- 4f Uyanik M, Yasui T, Ishihara K. J. Org. Chem. 2017; 82: 11946
- 5 Banik SM, Medley JW, Jacobsen EN. Science 2016; 353: 51
- 6a Wu H, He Y.-P, Xu L, Zhang D.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2014; 53: 3466
- 6b Zhang D.-Y, Xu L, Wu H, Gong L.-Z. Chem. Eur. J. 2015; 21: 10314
- 6c Cao Y, Zhang X, Lin G, Negrerie DZ, Du Y. Org. Lett. 2016; 18: 5580
- 6d Hu B, Cao Y, Zhang B, Negrerie DZ, Du Y. Adv. Synth. Catal. 2017; 359: 2542
- 7a Farooq U, Schäfer S, Shah A.-HA, Freudendahl DM, Wirth T. Synthesis 2010; 1023
- 7b Rodríguez A, Moran WJ. Synthesis 2012; 44: 1178
- 8a Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
- 8b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 8c Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
- 8d Yoshida J, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
- 8e Sperry JB, Wright DL. Chem. Soc. Rev. 2006; 35: 605
- 8f Moeller KD. Tetrahedron 2000; 56: 9527
- 8g Kawamata Y, Yan M, Liu Z, Bao D.-H, Chen J, Starr JT, Baran PS. J. Am. Chem. Soc. 2017; 139: 7448
- 8h Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS. Nature 2016; 533: 77
- 8i Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 14727
- 8j Schulz L, Enders M, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 4877
- 8k Wu Z.-J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 4734
- 8l Zhao H.-B, Liu Z.-J, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 12732
- 8m Badalyan A, Stahl SS. Nature 2016; 535: 406
- 8n Yang Q.-L, Li Y.-Q, Ma C, Fang P, Zhang X.-J, Mei T.-S. J. Am. Chem. Soc. 2017; 139: 3293
- 8o Sauermann N, Meyer TH, Tian C, Ackermann L. J. Am. Chem. Soc. 2017; 139: 18452
- 8p Francke R, Little RD. J. Am. Chem. Soc. 2014; 136: 427
- 9 Zhang S, Lian F, Xue M, Qin T, Li L, Zhang X, Xu K. Org. Lett. 2017; 19: 6622
- 10a Nakayama M, Fukuoka Y, Nozaki H, Matsuo A, Hayashi S. Chem. Lett. 1980; 1243
- 10b Aramaki Y, Chiba K, Tada M. Phytochemistry 1995; 38: 1419
- 10c Yan B.-F, Fang S.-T, Li W.-Z, Liu S.-J, Wang J.-H, Xia C.-H. Nat. Prod. Res. 2015; 29: 2013
- 11 Schmidt H, Meinert H. Angew. Chem. 1960; 72: 109
- 12a Fuchigami T, Fujita T. J. Org. Chem. 1994; 59: 7190
- 12b Sawamura T, Kuribayashi S, Inagi S, Fuchigami T. Org. Lett. 2010; 12: 644
- 12c Sawamura T, Kuribayashi S, Inagi S, Fuchigami T. Adv. Synth. Catal. 2010; 352: 2757
- 13a Inoue K, Ishikawa Y, Nishiyama S. Org. Lett. 2010; 12: 436
- 13b Kajiyama D, Inoue K, Ishikawa Y, Nishiyama S. Tetrahedron 2010; 66: 9779
- 13c Broese T, Francke R. Org. Lett. 2016; 18: 5896
- 13d Koleda O, Broese T, Noetzel J, Roemelt M, Suna E, Francke R. J. Org. Chem. 2017; 82: 11669
- 14a Francke R, Broese T, Rösel A. In Patai’s Chemistry of Functional Groups, Hypervalent Halogen Compounds . Marek I, Olofsson B, Rappoport Z. John Wiley & Sons, Ltd; Chichester: 2018
- 14b Elsherbini M, Wirth T. Chem. Eur. J. 2018; 24: 13399
- 15a Qurban J, Elsherbini M, Wirth T. J. Org. Chem. 2017; 82: 11872
- 15b Malmedy F, Wirth T. Chem. Eur. J. 2016; 22: 16072
- 15c Mizar P, Niebuhr R, Hutchings M, Farooq U, Wirth T. Chem. Eur. J. 2016; 22: 1614
- 15d Brown M, Kumar R, Rehbein J, Wirth T. Chem. Eur. J. 2016; 22: 4030
- 15e Mizar P, Wirth T. Angew. Chem. Int. Ed. 2014; 53: 5993
- 15f Farid U, Malmedy F, Claveau R, Albers L, Wirth T. Angew. Chem. Int. Ed. 2013; 52: 7018
- 15g Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
- 16a Fu N, Li L, Yang Q, Luo S. Org. Lett. 2017; 19: 2122
- 16b Jensen KL, Franke PT, Nielsen LT, Daasbjerg K, Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 129
- 16c Nguyen BH, Redden A, Moeller KD. Green Chem. 2014; 16: 69
- 17a Folgueiras-Amador AA, Qian X.-Y, Xu H.-C, Wirth T. Chem. Eur. J. 2018; 24: 487
- 17b Folgueiras-Amador AA, Philipps K, Guilbaud S, Poelakker J, Wirth T. Angew. Chem. Int. Ed. 2017; 56: 15446
- 17c Arai K, Wirth T. Org. Process Res. Dev. 2014; 18: 1377
- 18 CCDC 1834441 (3a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 19a Xu F, Qian X.-Y, Li Y.-J, Xu H.-C. Org. Lett. 2017; 19: 6332
- 19b Gieshoff T, Kehl A, Schollmeyer D, Moeller KD, Waldvogel SR. J. Am. Chem. Soc. 2017; 139: 12317
- 19c Xiong P, Xu H.-H, Xu H.-C. J. Am. Chem. Soc. 2017; 139: 2956
- 19d Rafiee M, Wang F, Hruszkewycz DP, Stahl SS. J. Am. Chem. Soc. 2018; 140: 22
- 20a Watts K, Baker A, Wirth T. J. Flow Chem. 2014; 4: 2
- 20b Folgueiras-Amador AA, Wirth T. In Science of Synthesis: Flow Chemistry in Organic Synthesis . Jamison TF, Koch G. Georg Thieme Verlag KG; Stuttgart: 2018
- 20c Pletcher D, Green RA, Brown RC. D. Chem. Rev. 2018; 118: 4573
- 20d Atobe M, Tateno H, Matsumura Y. Chem. Rev. 2018; 118: 4541
- 20e Gütz C, Stenglein A, Waldvogel SR. Org. Process Res. Dev. 2017; 21: 771
- 20f Green RA, Brown RC. D, Pletcher D, Harji B. Org. Process Res. Dev. 2015; 19: 1424
- 20g Kabeshov MA, Musio B, Murray PR. D, Browne DL, Ley SV. Org. Lett. 2014; 16: 4618
- 20h Green RA, Pletcher D, Leach SG, Brown RC. D. Org. Lett. 2016; 18: 1198
- 20i Arai T, Tateno H, Nakabayashi K, Kashiwagi T, Atobe M. Chem. Commun. 2015; 51: 4891
For reviews and books, see:
For recent publications on chiral iodine(III) reagents, see:
For reviews on electrochemistry, see:
For selected recent publications on electroorganic chemistry, see:
For molecules containing chiral keto lactones, see:
For selected enantioselective electrochemical processes, see:
For recent electrochemical oxidations of amides and benzyl ethers, see:
For reviews on flow electrolysis, see:
For selected publications, see: