Subscribe to RSS
DOI: 10.1055/s-0037-1610376
Rhodium-Catalyzed Cascade Annulative Coupling of 3,5-Diarylisoxazoles with Alkynes
This work was supported by JSPS KAKENHI JP 17H06092 (Grant-in-Aid for Specially Promoted Research) to M.M.Publication History
Received: 07 August 2018
Accepted after revision: 28 August 2018
Publication Date:
19 September 2018 (online)
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
A rhodium-catalyzed cascade annulative coupling of 3,5-diarylisoxazoles with three equivalents of an alkyne proceeds smoothly in the presence of a Cu(II) oxidant, where the sequential construction of isoquinoline and naphtho[1,8-bc]pyran frameworks connected by a biaryl linkage is achieved by a single operation. Most of the obtained polycyclic compounds exhibit visible fluorescence in both the solution and the solid state. The hexaphenylated isoquinoline-naphthopyran conjugate (R = Ph) as a representative product shows a green emission which can be turned off by making an isoquinolinium salt with an acid. The emission is also reversibly turned on by treatment with a base.
Key words
C–H activation - annulative coupling - isoquinoline - rhodium catalyst - polyaromatic compoundsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610376.
- Supporting Information
-
References
- 1a Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
- 1b Weil T, Vosch T, Hofkens J, Peneva K, Müllen K. Angew. Chem. Int. Ed. 2010; 49: 9068
- 1c Duarte TM. F, Müllen K. Chem. Rev. 2011; 111: 7260
- 1d Takimiya K, Shinamura S, Osaka I, Miyazaki E. Adv. Mater. 2011; 23: 4347
- 2a Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
- 2b Patureau FW, Wencel-Delord J, Glorius F. Aldrichimica Acta 2012; 45: 31
- 2c Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
- 2d Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894
- 2e Yang Y, Li K, Cheng Y, Wan D, Li M, You J. Chem. Commun. 2016; 52: 2872
- 3a Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
- 3b Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
- 3c Mochida S, Shimizu M, Hirano K, Satoh T, Miura M. Chem. Asian J. 2010; 5: 847
- 3d Patureau FW, Besset T, Kuhl N, Glorius F. J. Am. Chem. Soc. 2011; 133: 2154
- 3e Muralirajan K, Parthasarathy K, Cheng C.-H. Angew. Chem. Int. Ed. 2011; 50: 4169
- 3f Wei X, Zhao M, Du Z, Li X. Org. Lett. 2011; 13: 4636
- 3g Wang Y.-F, Toh KK, Lee J.-Y, Chiba S. Angew. Chem. Int. Ed. 2011; 50: 5927
- 3h Tan X, Liu B, Li X, Li B, Xu S, Song H, Wang B. J. Am. Chem. Soc. 2012; 134: 16163
- 3i Zhang G, Yang L, Wang Y, Xie Y, Huang H. J. Am. Chem. Soc. 2013; 135: 8850
- 3j Liu X, Li G, Song F, You J. Nat. Commun. 2014; 5: 5030
- 3k Yin J, Tan M, Wu D, Jiang R, Li C, You J. Angew. Chem. Int. Ed. 2017; 56: 13094
- 4a Satoh T, Miura M. Coupling Reactions of the sp2 C–H Bond with Alkynes. In Transition Metal-Mediated Aromatic Ring Construction. Tanaka K. Wiley; Hoboken: 2013: 683-718
- 4b Li S.-S, Qiu L, Lin L. Org. Biomol. Chem. 2016; 14: 4554
- 5a Pham MV, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 3484
- 5b Zheng J, You S.-L. Chem. Commun. 2014; 50: 8204
- 5c Liu B, Hu F, Shi B.-F. Adv. Synth. Catal. 2014; 356: 2688
- 5d Martinez AM, Echavarren J, Alonso I, Rodriguez N, Arrayas RG, Carretero JC. Chem. Sci. 2015; 6: 5802
- 5e Wang H, Wang Y, Yang H, Tan C, Jiang Y, Zhao Y, Fua H. Adv. Synth. Catal. 2015; 357: 489
- 5f Li S.-S, Wang C.-Q, Lin H, Zhang X.-M, Dong L. Org. Lett. 2015; 17: 3018
- 5g He Z, Huang Y. ACS Catal. 2016; 6: 7814
- 5h Zhang X, Yu X, Ji D, Yamamoto Y, Almansour AI, Arumugam N, Kumar RS, Bao M. Org. Lett. 2016; 18: 4246
- 5i Castro LC. M, Obata A, Aihara Y, Chatani N. Chem. Eur. J. 2016; 22: 1362
- 5j Annamalai P, Chen W.-Y, Raju S, Hsu K.-C, Upadhyay NS, Cheng C.-H, Chuang S.-C. Adv. Synth. Catal. 2016; 358: 3642
- 5k Fukuzumi K, Unoh Y, Nishii Y, Satoh T, Hirano K, Miura M. J. Org. Chem. 2016; 81: 2474
- 5l Wang L, Yu Y, Yang M, Kuai C, Cai D, Yu J, Cuia X. Adv. Synth. Catal. 2017; 359: 3818
- 5m Feng R, Gao Y, Liu Z, Zhang Y. Synlett 2017; 28: 2147
- 6a Jayakumar J, Parthasarathy K, Chen Y.-H, Lee T.-H, Chuang S.-C, Cheng C.-H. Angew. Chem. Int. Ed. 2014; 53: 9889
- 6b Ge Q, Hu Y, Li B, Wang B. Org. Lett. 2016; 18: 2483
- 6c Ge Q, Lia B, Wang B. Org. Biomol. Chem. 2016; 14: 1814
- 6d Feng B, Wan D, Yan L, Kadam VD, You J, Gao G. RSC Adv. 2016; 6: 66407
-
6e
Han YR,
Shim S.-H,
Kim D.-S,
Jun C.-H.
Org. Lett. 2017; 19: 2941
- 6f Yin J, Zhou F, Zhu L, Yang M, Lan Y, You J. Chem. Sci. 2018; 9: 5488
- 6g Shankar M, Ghosh K, Mukherjee K, Rit RK, Sahoo AK. Org. Lett. 2018; DOI: in press; DOI 10.1021/acs.orglett.8b02068.
- 7a Noguchi T, Nishii Y, Miura M. Chem. Lett. 2017; 46: 1512
- 7b Nishii Y, Bachon A.-K, Moon S, Bolm C, Miura M. Chem. Lett. 2017; 46: 1347
- 7c Yang F, Yu J, Liu Y, Zhu J. Org. Lett. 2017; 19: 2885
- 8a Too PC, Wang Y.-F, Chiba S. Org. Lett. 2010; 12: 5688
- 8b Tan Y, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 3676
- 8c Too PC, Noji T, Lim YJ, Li X, Chiba S. Synlett 2011; 2789
- 8d Wang H, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 7318
- 8e Chiba S. Chem. Lett. 2012; 41: 1554
- 8f Neely JM, Robis T. J. Am. Chem. Soc. 2013; 135: 66
- 8g Dateer RB, Chang S. J. Am. Chem. Soc. 2015; 137: 4908
- 8h Yu X, Chen K, Wang Q, Guo S, Zha S, Zhu J. Angew. Chem. Int. Ed. 2017; 56: 5222
- 9a Zhao J, Li H, Yang K, Sun S, Lu A, Xu Y. New J. Chem. 2014; 38: 3371
- 9b Jolibois AE, Lewis W, Moody CJ. Org. Lett. 2014; 16: 1064
- 9c Liu Y, Zhao Z, Lam JW. Y, Zhao Y, Chen Y, Liu Y, Tang BZ. Macromolecules 2015; 48: 4241
- 9d Intaraudom C, Nitthithanasilp S, Rachtawee P, Boonruangprapa T, Prabpai S, Kongsaeree P, Pittayakhajonwut P. Phytochemistry 2015; 120: 19
- 9e Basak T, Grudzień K, Barbasiewicz M. Eur. J. Inorg. Chem. 2016; 3513
- 10 Thirunavukkarasu VS, Donati M, Ackermann L. Org. Lett. 2012; 14: 3416
- 11 Yan K, Li B, Wang B. Adv. Synth. Catal. 2018; 360: 2272
- 12 Li Y, Wang Q, Yang X, Xie F, Li X. Org. Lett. 2017; 19: 3410
- 13 CCDC 1849497 (3ad), 1849498 (3ga), 1849499 (3ha), 1849500 (3ma), 1849501 (4aa), 1849502 (4oa), and 1849503 (4pa) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 14a Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
- 14b Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
- 15 Pusch S, Opatz T. Org. Lett. 2014; 16: 5430
- 16a Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
- 16b Coffman KC, Palazzo TA, Hartley TP, Fettinger JC, Tantillo DJ, Kurth MJ. Org. Lett. 2013; 15: 2062
- 17a Mio MJ, Kopel LC, Braun JB, Gadzikwa TL, Hull KL, Brisbois RG, Markworth CJ, Grieco PA. Org. Lett. 2002; 4: 3199
- 17b Novák Z, Nemes P, Kotschy A. Org. Lett. 2004; 6: 4917
- 18 Esqueda AC, Conejero S, Maya M, Carmona E. Organometallics 2009; 28: 45
- 19 Graser M, Kopacka H, Wurst K, Müller T, Bildstein B. Inorg. Chim. Acta 2013; 401: 38
- 20a Harris RL. N, Huppatz JL. Aust. J. Chem. 1977; 30: 2225
- 20b Sharma TC, Rojindar S, Berge DD, Kale AV. L. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1986; 25: 437
- 20c Harigae R, Moriyama K, Togo H. J. Org. Chem. 2014; 79: 2049
- 20d Kumar GR, Kumar YK, Reddy MS. Chem. Commun. 2016; 52: 6589
- 20e Jeyaveeran JC, Praveen C, Arun Y, Prince AA. M, Perumal PT. J. Chem. Sci. 2016; 128: 73
- 20f Ikeda R, Kuwano R. Chem. Eur. J. 2016; 22: 8610
- 20g Li Z, Wen G, Fu R, Yang J. J. Chem. Res. 2016; 40: 643
For reviews, see:
For selected reviews, see:
For recent examples, see:
For reviews, see:
For selected recent examples, see:
For recent examples, see:
For related cobalt catalysis, see:
Selected examples for C–H activation using internal oxidant to construct N-heterocyclic compounds, see:
For recent publications, see: